TPress
Waterval, N. F. J.; Brehm, M. -A.; Harlaar, J.; Nollet, F.
In: J. NeuroEng. Rehabil., Bd. 18, Nr. 1, 2021, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, ankle foot orthosis, article, body weight, Carbon Ankle7, clinical effectiveness, correlational study, dorsal leaf spring ankle foot orthosis, energy cost, female, human, male, middle aged, muscle strength, muscle weakness, range of motion, risk factor, triceps surae muscle, walking speed
@article{Waterval2021,
title = {Individual stiffness optimization of dorsal leaf spring ankle-foot orthoses in people with calf muscle weakness is superior to standard bodyweight-based recommendations},
author = {N. F. J. Waterval and M. -A. Brehm and J. Harlaar and F. Nollet},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2012344314&from=export},
doi = {10.1186/s12984-021-00890-8},
issn = {1743-0003},
year = {2021},
date = {2021-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {18},
number = {1},
address = {N.F.J. Waterval, Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands},
abstract = {Background: In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle-foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods: Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results: In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s},
keywords = {adult, ankle foot orthosis, article, body weight, Carbon Ankle7, clinical effectiveness, correlational study, dorsal leaf spring ankle foot orthosis, energy cost, female, human, male, middle aged, muscle strength, muscle weakness, range of motion, risk factor, triceps surae muscle, walking speed},
pubstate = {published},
tppubtype = {article}
}
Pröbsting, E.; Kannenberg, A.; Zacharias, B.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 1, S. 65–77, 2017, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, aged, ankle foot orthosis, article, C Brace, clinical article, daily life activity, device safety, E MAG Active, female, follow up, Free Walk, Horton SCO, human, KAFO SPL, knee-ankle-foot orthosis, male, microprocessor stance and swing control orthosis, middle aged, NEURO MATIC, patient-reported outcome, standing, very elderly, walking
@article{Proebsting2017,
title = {Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis},
author = {E. Pröbsting and A. Kannenberg and B. Zacharias},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L614321344&from=export},
doi = {10.1177/0309364616637954},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {1},
pages = {65–77},
address = {E. Pröbsting, Otto Bock HealthCare GmbH, Department Clinical Research and Services, Goettingen, Germany},
abstract = {Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p =.001), paretic limb health (p =.04), sounds (p =.02), and well-being (p =.01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled knee flexion during weight bearing and dynamic swing control, resulting in significant improvements in perceived orthotic mobility and safety.},
keywords = {adult, aged, ankle foot orthosis, article, C Brace, clinical article, daily life activity, device safety, E MAG Active, female, follow up, Free Walk, Horton SCO, human, KAFO SPL, knee-ankle-foot orthosis, male, microprocessor stance and swing control orthosis, middle aged, NEURO MATIC, patient-reported outcome, standing, very elderly, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Waterval, N. F. J.; Brehm, M. -A.; Harlaar, J.; Nollet, F.
In: J. NeuroEng. Rehabil., Bd. 18, Nr. 1, 2021, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, ankle foot orthosis, article, body weight, Carbon Ankle7, clinical effectiveness, correlational study, dorsal leaf spring ankle foot orthosis, energy cost, female, human, male, middle aged, muscle strength, muscle weakness, range of motion, risk factor, triceps surae muscle, walking speed
@article{Waterval2021,
title = {Individual stiffness optimization of dorsal leaf spring ankle-foot orthoses in people with calf muscle weakness is superior to standard bodyweight-based recommendations},
author = {N. F. J. Waterval and M. -A. Brehm and J. Harlaar and F. Nollet},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2012344314&from=export},
doi = {10.1186/s12984-021-00890-8},
issn = {1743-0003},
year = {2021},
date = {2021-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {18},
number = {1},
address = {N.F.J. Waterval, Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands},
abstract = {Background: In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle-foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods: Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results: In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s},
keywords = {adult, ankle foot orthosis, article, body weight, Carbon Ankle7, clinical effectiveness, correlational study, dorsal leaf spring ankle foot orthosis, energy cost, female, human, male, middle aged, muscle strength, muscle weakness, range of motion, risk factor, triceps surae muscle, walking speed},
pubstate = {published},
tppubtype = {article}
}
2017
Pröbsting, E.; Kannenberg, A.; Zacharias, B.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 1, S. 65–77, 2017, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, aged, ankle foot orthosis, article, C Brace, clinical article, daily life activity, device safety, E MAG Active, female, follow up, Free Walk, Horton SCO, human, KAFO SPL, knee-ankle-foot orthosis, male, microprocessor stance and swing control orthosis, middle aged, NEURO MATIC, patient-reported outcome, standing, very elderly, walking
@article{Proebsting2017,
title = {Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis},
author = {E. Pröbsting and A. Kannenberg and B. Zacharias},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L614321344&from=export},
doi = {10.1177/0309364616637954},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {1},
pages = {65–77},
address = {E. Pröbsting, Otto Bock HealthCare GmbH, Department Clinical Research and Services, Goettingen, Germany},
abstract = {Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p =.001), paretic limb health (p =.04), sounds (p =.02), and well-being (p =.01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled knee flexion during weight bearing and dynamic swing control, resulting in significant improvements in perceived orthotic mobility and safety.},
keywords = {adult, aged, ankle foot orthosis, article, C Brace, clinical article, daily life activity, device safety, E MAG Active, female, follow up, Free Walk, Horton SCO, human, KAFO SPL, knee-ankle-foot orthosis, male, microprocessor stance and swing control orthosis, middle aged, NEURO MATIC, patient-reported outcome, standing, very elderly, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Waterval, N. F. J.; Brehm, M. -A.; Harlaar, J.; Nollet, F.
In: J. NeuroEng. Rehabil., Bd. 18, Nr. 1, 2021, ISSN: 1743-0003.
@article{Waterval2021,
title = {Individual stiffness optimization of dorsal leaf spring ankle-foot orthoses in people with calf muscle weakness is superior to standard bodyweight-based recommendations},
author = {N. F. J. Waterval and M. -A. Brehm and J. Harlaar and F. Nollet},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2012344314&from=export},
doi = {10.1186/s12984-021-00890-8},
issn = {1743-0003},
year = {2021},
date = {2021-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {18},
number = {1},
address = {N.F.J. Waterval, Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands},
abstract = {Background: In people with calf muscle weakness, the stiffness of dorsal leaf spring ankle-foot orthoses (DLS-AFO) needs to be individualized to maximize its effect on walking. Orthotic suppliers may recommend a certain stiffness based on body weight and activity level. However, it is unknown whether these recommendations are sufficient to yield the optimal stiffness for the individual. Therefore, we assessed whether the stiffness following the supplier’s recommendation of the Carbon Ankle7 (CA7) dorsal leaf matched the experimentally optimized AFO stiffness. Methods: Thirty-four persons with calf muscle weakness were included and provided a new DLS-AFO of which the stiffness could be varied by changing the CA7® (Ottobock, Duderstadt, Germany) dorsal leaf. For five different stiffness levels, including the supplier recommended stiffness, gait biomechanics, walking energy cost and speed were assessed. Based on these measures, the individual experimentally optimal AFO stiffness was selected. Results: In only 8 of 34 (23%) participants, the supplier recommended stiffness matched the experimentally optimized AFO stiffness, the latter being on average 1.2 ± 1.3 Nm/degree more flexible. The DLS-AFO with an experimentally optimized stiffness resulted in a significantly lower walking energy cost (− 0.21 ± 0.26 J/kg/m, p < 0.001) and a higher speed (+ 0.02 m/s},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2017
Pröbsting, E.; Kannenberg, A.; Zacharias, B.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 1, S. 65–77, 2017, ISSN: 0309-3646.
@article{Proebsting2017,
title = {Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis},
author = {E. Pröbsting and A. Kannenberg and B. Zacharias},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L614321344&from=export},
doi = {10.1177/0309364616637954},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {1},
pages = {65–77},
address = {E. Pröbsting, Otto Bock HealthCare GmbH, Department Clinical Research and Services, Goettingen, Germany},
abstract = {Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p =.001), paretic limb health (p =.04), sounds (p =.02), and well-being (p =.01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled knee flexion during weight bearing and dynamic swing control, resulting in significant improvements in perceived orthotic mobility and safety.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}