TPress
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Ernst, M.; Altenburg, B.; Schmalz, T.
Characterizing adaptations of prosthetic feet in the frontal plane Artikel
In: Prosthet. Orthot. Int., Bd. 44, Nr. 4, S. 225–233, 2020, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: arm prosthesis, arthrodesis, article, Axtion, biomechanics, bone conduction, finite element analysis, forefoot, histology, human, joint function, mathematical model, motion analysis system, osteoarthritis, Pacifica LP, Pro Flex LP, Prototype ESRJ, subtalar joint, theoretical model, Triton LP
@article{Ernst2020,
title = {Characterizing adaptations of prosthetic feet in the frontal plane},
author = {M. Ernst and B. Altenburg and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005154580&from=export},
doi = {10.1177/0309364620917838},
issn = {0309-3646},
year = {2020},
date = {2020-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {44},
number = {4},
pages = {225–233},
address = {M. Ernst, Research Biomechanics, Clinical Research and Services, Ottobock SE Co. KGaA, Göttingen, Germany},
abstract = {Background: Energy-storage and return feet incorporate various design features including split toes. As a potential improvement, an energy-storage and return foot with a dedicated ankle joint was recently introduced allowing for easily accessible inversion/eversion movement. However, the adaptability of energy-storage and return feet to uneven ground and the effects on biomechanical and clinical parameters have not been investigated in detail. Objectives: To investigate the design-related ability of prosthetic feet to adapt to cross slopes and derive a theoretical model. Study design: Mechanical testing and characterization. Methods: Mechanical adaptation to cross slopes was investigated for six prosthetic feet measured by a motion capture system. A theoretical model linking the measured data with adaptations is proposed. Results: The type and degree of adaptation depends on the foot design, for example, stiffness, split toe or continuous carbon forefoot, and additional ankle joint. The model used shows high correlations with the measured data for all feet. Conclusions: The ability of prosthetic feet to adapt to uneven ground is design-dependent. The split-toe feet adapted better to cross slopes than those with continuous carbon forefeet. Joints enhance this further by allowing for additional inversion and eversion. The influence on biomechanical and clinical parameters should be assessed in future studies. Clinical relevance: Knowing foot-specific ability to adapt to uneven ground may help in selecting an appropriate prosthetic foot for persons with a lower limb amputation. Faster and more comprehensive adaptations to uneven ground may lower the need for compensations and therefore increase user safety.},
keywords = {arm prosthesis, arthrodesis, article, Axtion, biomechanics, bone conduction, finite element analysis, forefoot, histology, human, joint function, mathematical model, motion analysis system, osteoarthritis, Pacifica LP, Pro Flex LP, Prototype ESRJ, subtalar joint, theoretical model, Triton LP},
pubstate = {published},
tppubtype = {article}
}
2022
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2020
Ernst, M.; Altenburg, B.; Schmalz, T.
Characterizing adaptations of prosthetic feet in the frontal plane Artikel
In: Prosthet. Orthot. Int., Bd. 44, Nr. 4, S. 225–233, 2020, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: arm prosthesis, arthrodesis, article, Axtion, biomechanics, bone conduction, finite element analysis, forefoot, histology, human, joint function, mathematical model, motion analysis system, osteoarthritis, Pacifica LP, Pro Flex LP, Prototype ESRJ, subtalar joint, theoretical model, Triton LP
@article{Ernst2020,
title = {Characterizing adaptations of prosthetic feet in the frontal plane},
author = {M. Ernst and B. Altenburg and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005154580&from=export},
doi = {10.1177/0309364620917838},
issn = {0309-3646},
year = {2020},
date = {2020-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {44},
number = {4},
pages = {225–233},
address = {M. Ernst, Research Biomechanics, Clinical Research and Services, Ottobock SE Co. KGaA, Göttingen, Germany},
abstract = {Background: Energy-storage and return feet incorporate various design features including split toes. As a potential improvement, an energy-storage and return foot with a dedicated ankle joint was recently introduced allowing for easily accessible inversion/eversion movement. However, the adaptability of energy-storage and return feet to uneven ground and the effects on biomechanical and clinical parameters have not been investigated in detail. Objectives: To investigate the design-related ability of prosthetic feet to adapt to cross slopes and derive a theoretical model. Study design: Mechanical testing and characterization. Methods: Mechanical adaptation to cross slopes was investigated for six prosthetic feet measured by a motion capture system. A theoretical model linking the measured data with adaptations is proposed. Results: The type and degree of adaptation depends on the foot design, for example, stiffness, split toe or continuous carbon forefoot, and additional ankle joint. The model used shows high correlations with the measured data for all feet. Conclusions: The ability of prosthetic feet to adapt to uneven ground is design-dependent. The split-toe feet adapted better to cross slopes than those with continuous carbon forefeet. Joints enhance this further by allowing for additional inversion and eversion. The influence on biomechanical and clinical parameters should be assessed in future studies. Clinical relevance: Knowing foot-specific ability to adapt to uneven ground may help in selecting an appropriate prosthetic foot for persons with a lower limb amputation. Faster and more comprehensive adaptations to uneven ground may lower the need for compensations and therefore increase user safety.},
keywords = {arm prosthesis, arthrodesis, article, Axtion, biomechanics, bone conduction, finite element analysis, forefoot, histology, human, joint function, mathematical model, motion analysis system, osteoarthritis, Pacifica LP, Pro Flex LP, Prototype ESRJ, subtalar joint, theoretical model, Triton LP},
pubstate = {published},
tppubtype = {article}
}
2022
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2020
Ernst, M.; Altenburg, B.; Schmalz, T.
Characterizing adaptations of prosthetic feet in the frontal plane Artikel
In: Prosthet. Orthot. Int., Bd. 44, Nr. 4, S. 225–233, 2020, ISSN: 0309-3646.
@article{Ernst2020,
title = {Characterizing adaptations of prosthetic feet in the frontal plane},
author = {M. Ernst and B. Altenburg and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005154580&from=export},
doi = {10.1177/0309364620917838},
issn = {0309-3646},
year = {2020},
date = {2020-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {44},
number = {4},
pages = {225–233},
address = {M. Ernst, Research Biomechanics, Clinical Research and Services, Ottobock SE Co. KGaA, Göttingen, Germany},
abstract = {Background: Energy-storage and return feet incorporate various design features including split toes. As a potential improvement, an energy-storage and return foot with a dedicated ankle joint was recently introduced allowing for easily accessible inversion/eversion movement. However, the adaptability of energy-storage and return feet to uneven ground and the effects on biomechanical and clinical parameters have not been investigated in detail. Objectives: To investigate the design-related ability of prosthetic feet to adapt to cross slopes and derive a theoretical model. Study design: Mechanical testing and characterization. Methods: Mechanical adaptation to cross slopes was investigated for six prosthetic feet measured by a motion capture system. A theoretical model linking the measured data with adaptations is proposed. Results: The type and degree of adaptation depends on the foot design, for example, stiffness, split toe or continuous carbon forefoot, and additional ankle joint. The model used shows high correlations with the measured data for all feet. Conclusions: The ability of prosthetic feet to adapt to uneven ground is design-dependent. The split-toe feet adapted better to cross slopes than those with continuous carbon forefeet. Joints enhance this further by allowing for additional inversion and eversion. The influence on biomechanical and clinical parameters should be assessed in future studies. Clinical relevance: Knowing foot-specific ability to adapt to uneven ground may help in selecting an appropriate prosthetic foot for persons with a lower limb amputation. Faster and more comprehensive adaptations to uneven ground may lower the need for compensations and therefore increase user safety.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}