TPress
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2017
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2017
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}