TPress
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
Williams, M. R.; D'Andrea, S.; Herr, H. M.
Impact on gait biomechanics of using an active variable impedance prosthetic knee Artikel
In: J. NeuroEng. Rehabil., Bd. 13, Nr. 1, 2016, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: above knee amputation, adult, aged, article, biomechanics, body position, C-leg, clinical article, College Park Trustep, controlled study, female, foot prosthesis, gait, gait biomechanics, hip, hip extension moment, human, knee power, knee prosthesis, Low Profile Vari-Flex, male, musculoskeletal system parameters, priority journal, range of motion, robotic variable impedance prosthetic knee, step length symmetry, torso lean angle, Triton, VI Knee, walking speed
@article{Williams2016,
title = {Impact on gait biomechanics of using an active variable impedance prosthetic knee},
author = {M. R. Williams and S. D'Andrea and H. M. Herr},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L610660431&from=export},
doi = {10.1186/s12984-016-0159-0},
issn = {1743-0003},
year = {2016},
date = {2016-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {13},
number = {1},
address = {M.R. Williams, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States},
abstract = {Background: An above knee amputation can have a significant impact on gait, with substantial deviations in inter-leg symmetry, step length, hip exertion and upper body involvement even when using a current clinical standard of care prosthesis. These differences can produce gait that is less efficient and less comfortable, resulting in slower and shorter distance walking, particularly with long term use. Methods: A robotic variable impedance prosthetic knee (VI Knee) was tested with five individuals (N = 5) with unilateral amputation above the knee at fixed speeds both above and below their normal walking speed. Subject gait was measured as they walked along an instrumented walkway via optical motion capture and force plates in the floor. Each subject's gait while using the VI Knee was compared to that while using their standard of care knee (OttoBock C-Leg). Results: Significant differences (p < 0.05) in walking between the standard of care and variable impedance devices were seen in step length and hip range of motion symmetries, hip extension moment, knee power and torso lean angle. While using the VI Knee, several subjects demonstrated statistically significant improvements in gait, particularly in increased hip range of motion symmetry between affected and intact sides, greater prosthesis knee power and in reducing upper body involvement in the walking task by decreasing forward and affected side lean and reducing the pelvis-torso twist coupling. These changes to torso posture during gait also resulted in increased terminal stance hip flexion moment across subjects. Detriments to gait were also observed in that some subjects exhibited decreased step length symmetry while using the VI Knee compared to the C-Leg. Conclusions: The knee tested represents the potential to improve gait biomechanics and reduce upper body involvement in persons with above knee amputation compared to current standard of care devices. While using the VI Knee, subjects demonstrated statistically significant improvements in several aspects of gait though some were worsened while using the device. It is possible that these negative effects may be mitigated through longer term training and experience with the VI Knee. Given the demonstrated benefits and the potential to reduce or eliminate detriments through training, using a powered device like the VI Knee, particularly over an extended period of time, may help to improve walking performance and comfort.},
keywords = {above knee amputation, adult, aged, article, biomechanics, body position, C-leg, clinical article, College Park Trustep, controlled study, female, foot prosthesis, gait, gait biomechanics, hip, hip extension moment, human, knee power, knee prosthesis, Low Profile Vari-Flex, male, musculoskeletal system parameters, priority journal, range of motion, robotic variable impedance prosthetic knee, step length symmetry, torso lean angle, Triton, VI Knee, walking speed},
pubstate = {published},
tppubtype = {article}
}
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
Abstract | Links | Schlagwörter: anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation},
pubstate = {published},
tppubtype = {article}
}
2023
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2016
Williams, M. R.; D'Andrea, S.; Herr, H. M.
Impact on gait biomechanics of using an active variable impedance prosthetic knee Artikel
In: J. NeuroEng. Rehabil., Bd. 13, Nr. 1, 2016, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: above knee amputation, adult, aged, article, biomechanics, body position, C-leg, clinical article, College Park Trustep, controlled study, female, foot prosthesis, gait, gait biomechanics, hip, hip extension moment, human, knee power, knee prosthesis, Low Profile Vari-Flex, male, musculoskeletal system parameters, priority journal, range of motion, robotic variable impedance prosthetic knee, step length symmetry, torso lean angle, Triton, VI Knee, walking speed
@article{Williams2016,
title = {Impact on gait biomechanics of using an active variable impedance prosthetic knee},
author = {M. R. Williams and S. D'Andrea and H. M. Herr},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L610660431&from=export},
doi = {10.1186/s12984-016-0159-0},
issn = {1743-0003},
year = {2016},
date = {2016-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {13},
number = {1},
address = {M.R. Williams, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States},
abstract = {Background: An above knee amputation can have a significant impact on gait, with substantial deviations in inter-leg symmetry, step length, hip exertion and upper body involvement even when using a current clinical standard of care prosthesis. These differences can produce gait that is less efficient and less comfortable, resulting in slower and shorter distance walking, particularly with long term use. Methods: A robotic variable impedance prosthetic knee (VI Knee) was tested with five individuals (N = 5) with unilateral amputation above the knee at fixed speeds both above and below their normal walking speed. Subject gait was measured as they walked along an instrumented walkway via optical motion capture and force plates in the floor. Each subject's gait while using the VI Knee was compared to that while using their standard of care knee (OttoBock C-Leg). Results: Significant differences (p < 0.05) in walking between the standard of care and variable impedance devices were seen in step length and hip range of motion symmetries, hip extension moment, knee power and torso lean angle. While using the VI Knee, several subjects demonstrated statistically significant improvements in gait, particularly in increased hip range of motion symmetry between affected and intact sides, greater prosthesis knee power and in reducing upper body involvement in the walking task by decreasing forward and affected side lean and reducing the pelvis-torso twist coupling. These changes to torso posture during gait also resulted in increased terminal stance hip flexion moment across subjects. Detriments to gait were also observed in that some subjects exhibited decreased step length symmetry while using the VI Knee compared to the C-Leg. Conclusions: The knee tested represents the potential to improve gait biomechanics and reduce upper body involvement in persons with above knee amputation compared to current standard of care devices. While using the VI Knee, subjects demonstrated statistically significant improvements in several aspects of gait though some were worsened while using the device. It is possible that these negative effects may be mitigated through longer term training and experience with the VI Knee. Given the demonstrated benefits and the potential to reduce or eliminate detriments through training, using a powered device like the VI Knee, particularly over an extended period of time, may help to improve walking performance and comfort.},
keywords = {above knee amputation, adult, aged, article, biomechanics, body position, C-leg, clinical article, College Park Trustep, controlled study, female, foot prosthesis, gait, gait biomechanics, hip, hip extension moment, human, knee power, knee prosthesis, Low Profile Vari-Flex, male, musculoskeletal system parameters, priority journal, range of motion, robotic variable impedance prosthetic knee, step length symmetry, torso lean angle, Triton, VI Knee, walking speed},
pubstate = {published},
tppubtype = {article}
}
2014
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
Abstract | Links | Schlagwörter: anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation},
pubstate = {published},
tppubtype = {article}
}
2023
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Williams, M. R.; D'Andrea, S.; Herr, H. M.
Impact on gait biomechanics of using an active variable impedance prosthetic knee Artikel
In: J. NeuroEng. Rehabil., Bd. 13, Nr. 1, 2016, ISSN: 1743-0003.
@article{Williams2016,
title = {Impact on gait biomechanics of using an active variable impedance prosthetic knee},
author = {M. R. Williams and S. D'Andrea and H. M. Herr},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L610660431&from=export},
doi = {10.1186/s12984-016-0159-0},
issn = {1743-0003},
year = {2016},
date = {2016-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {13},
number = {1},
address = {M.R. Williams, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States},
abstract = {Background: An above knee amputation can have a significant impact on gait, with substantial deviations in inter-leg symmetry, step length, hip exertion and upper body involvement even when using a current clinical standard of care prosthesis. These differences can produce gait that is less efficient and less comfortable, resulting in slower and shorter distance walking, particularly with long term use. Methods: A robotic variable impedance prosthetic knee (VI Knee) was tested with five individuals (N = 5) with unilateral amputation above the knee at fixed speeds both above and below their normal walking speed. Subject gait was measured as they walked along an instrumented walkway via optical motion capture and force plates in the floor. Each subject's gait while using the VI Knee was compared to that while using their standard of care knee (OttoBock C-Leg). Results: Significant differences (p < 0.05) in walking between the standard of care and variable impedance devices were seen in step length and hip range of motion symmetries, hip extension moment, knee power and torso lean angle. While using the VI Knee, several subjects demonstrated statistically significant improvements in gait, particularly in increased hip range of motion symmetry between affected and intact sides, greater prosthesis knee power and in reducing upper body involvement in the walking task by decreasing forward and affected side lean and reducing the pelvis-torso twist coupling. These changes to torso posture during gait also resulted in increased terminal stance hip flexion moment across subjects. Detriments to gait were also observed in that some subjects exhibited decreased step length symmetry while using the VI Knee compared to the C-Leg. Conclusions: The knee tested represents the potential to improve gait biomechanics and reduce upper body involvement in persons with above knee amputation compared to current standard of care devices. While using the VI Knee, subjects demonstrated statistically significant improvements in several aspects of gait though some were worsened while using the device. It is possible that these negative effects may be mitigated through longer term training and experience with the VI Knee. Given the demonstrated benefits and the potential to reduce or eliminate detriments through training, using a powered device like the VI Knee, particularly over an extended period of time, may help to improve walking performance and comfort.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}