TPress
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport},
pubstate = {published},
tppubtype = {article}
}
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}