TPress
Whitehead, J. M. Aldridge; Wolf, E. J.; Scoville, C. R.; Wilken, J. M.
In: Clin. Orthop. Relat. Res., Bd. 472, Nr. 10, S. 3093–3101, 2014, ISSN: 0009-921X.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputation, article, C- Leg, clinical article, controlled study, femur, functional assessment, ground reaction force, human, joint function, kinematics, male, microprocessor, microprocessor controlled prosthetic knee, motion analysis system, priority journal, Total Knee, walking, X2
@article{AldridgeWhitehead2014,
title = {Does a Microprocessor-controlled Prosthetic Knee Affect Stair Ascent Strategies in Persons With Transfemoral Amputation?},
author = {J. M. Aldridge Whitehead and E. J. Wolf and C. R. Scoville and J. M. Wilken},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L608263443&from=export},
doi = {10.1007/s11999-014-3484-2},
issn = {0009-921X},
year = {2014},
date = {2014-10-01},
journal = {Clin. Orthop. Relat. Res.},
volume = {472},
number = {10},
pages = {3093–3101},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {J.M. Wilken, DOD-VA Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, 3551 Roger Brooke Drive, Ft Sam Houston, TX, United States},
abstract = {Background: Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2®) uses flexion/extension resistance to allow step-over-step stair ascent. Questions/Purposes: We compared self-selected stair ascent strategies between conventional and X2® prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2® users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2® users. Methods: Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2® knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. Results: One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2® knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°},
keywords = {above knee prosthesis, adult, amputation, article, C- Leg, clinical article, controlled study, femur, functional assessment, ground reaction force, human, joint function, kinematics, male, microprocessor, microprocessor controlled prosthetic knee, motion analysis system, priority journal, Total Knee, walking, X2},
pubstate = {published},
tppubtype = {article}
}
2014
Whitehead, J. M. Aldridge; Wolf, E. J.; Scoville, C. R.; Wilken, J. M.
In: Clin. Orthop. Relat. Res., Bd. 472, Nr. 10, S. 3093–3101, 2014, ISSN: 0009-921X.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputation, article, C- Leg, clinical article, controlled study, femur, functional assessment, ground reaction force, human, joint function, kinematics, male, microprocessor, microprocessor controlled prosthetic knee, motion analysis system, priority journal, Total Knee, walking, X2
@article{AldridgeWhitehead2014,
title = {Does a Microprocessor-controlled Prosthetic Knee Affect Stair Ascent Strategies in Persons With Transfemoral Amputation?},
author = {J. M. Aldridge Whitehead and E. J. Wolf and C. R. Scoville and J. M. Wilken},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L608263443&from=export},
doi = {10.1007/s11999-014-3484-2},
issn = {0009-921X},
year = {2014},
date = {2014-10-01},
journal = {Clin. Orthop. Relat. Res.},
volume = {472},
number = {10},
pages = {3093–3101},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {J.M. Wilken, DOD-VA Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, 3551 Roger Brooke Drive, Ft Sam Houston, TX, United States},
abstract = {Background: Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2®) uses flexion/extension resistance to allow step-over-step stair ascent. Questions/Purposes: We compared self-selected stair ascent strategies between conventional and X2® prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2® users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2® users. Methods: Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2® knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. Results: One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2® knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°},
keywords = {above knee prosthesis, adult, amputation, article, C- Leg, clinical article, controlled study, femur, functional assessment, ground reaction force, human, joint function, kinematics, male, microprocessor, microprocessor controlled prosthetic knee, motion analysis system, priority journal, Total Knee, walking, X2},
pubstate = {published},
tppubtype = {article}
}
2014
Whitehead, J. M. Aldridge; Wolf, E. J.; Scoville, C. R.; Wilken, J. M.
In: Clin. Orthop. Relat. Res., Bd. 472, Nr. 10, S. 3093–3101, 2014, ISSN: 0009-921X.
@article{AldridgeWhitehead2014,
title = {Does a Microprocessor-controlled Prosthetic Knee Affect Stair Ascent Strategies in Persons With Transfemoral Amputation?},
author = {J. M. Aldridge Whitehead and E. J. Wolf and C. R. Scoville and J. M. Wilken},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L608263443&from=export},
doi = {10.1007/s11999-014-3484-2},
issn = {0009-921X},
year = {2014},
date = {2014-10-01},
journal = {Clin. Orthop. Relat. Res.},
volume = {472},
number = {10},
pages = {3093–3101},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {J.M. Wilken, DOD-VA Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, 3551 Roger Brooke Drive, Ft Sam Houston, TX, United States},
abstract = {Background: Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2®) uses flexion/extension resistance to allow step-over-step stair ascent. Questions/Purposes: We compared self-selected stair ascent strategies between conventional and X2® prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2® users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2® users. Methods: Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2® knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. Results: One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2® knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°},
keywords = {},
pubstate = {published},
tppubtype = {article}
}