TPress
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
Abstract | Links | Schlagwörter: adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
2004
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
Abstract | Links | Schlagwörter: adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2004
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}