TPress
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}