TPress
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}