TPress
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
Abstract | Links | Schlagwörter: ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {adduction, adult, amputation, ankle, article, C Leg 4, camera, carbon fiber, clinical article, foot prosthesis, forefoot, human, knee, knee function, lower limb, male, microprocessor, retrospective study, sensor, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2014
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
Abstract | Links | Schlagwörter: ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Pröbsting, E.; Altenburg, B.; Bellmann, M.; Krug, K.; Schmalz, T.
In: Prosthet. Orthot. Int., Bd. 46, Nr. 4, S. 306–313, 2022, ISSN: 0309-3646.
@article{Proebsting2022,
title = {How does ankle power on the prosthetic side influence loading parameters on the sound side during level walking of persons with transfemoral amputation?},
author = {E. Pröbsting and B. Altenburg and M. Bellmann and K. Krug and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2019708323&from=export},
doi = {10.1097/pxr.0000000000000099},
issn = {0309-3646},
year = {2022},
date = {2022-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {46},
number = {4},
pages = {306–313},
address = {E. Pröbsting, Ottobock SE & Co. KGaA, Herrmann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background:Increased ankle power on the prosthetic side seems to decrease biomechanical loading parameters on the sound side. This assumption is based on biomechanical comparisons of different foot constructions. However, such study designs could not show whether the amount of ankle power solely influences the sound side.Objective:To analyze the influence of divergent ankle power, resulting from different foot constructions and from different ankle power settings, on the sound side loading parameters.Study design:Interventional cross sectional study.Methods:Level walking of transfemoral amputees with a microprocessor knee joint and Solid Ankle Cushioned Heel (SACH), energy storing and returning (ESR) and powered foot (PF) was analyzed. The PF was adapted in three configurations: without power (np), low power (lp), and optimal power (op). An optoelectronic camera system with 12 cameras and two force plates were used.Results:The ankle power on the prosthetic side shows significant differences about foot types and different settings of the PF. The knee adduction moment, the knee flexion moment, and the vertical ground reaction forces on the sound side were significantly reduced with PF_op and ESR in comparison to SACH. When analyzing these parameters for the different PF configurations, only some show significant results at normal velocity.Conclusions:The additional positive mechanical work for an active push off in the PF tends to have a relieving effect. The biomechanical sound side loading parameters are reduced with PF_op in comparison to SACH and ESR, resulting in a relief of the sound side of lower limb amputees.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2010
Ludwigs, E.; Bellmann, M.; Schmalz, T.; Blumentritt, S.
Biomechanical differences between two exoprosthetic hip joint systems during level walking Artikel
In: Prosthet. Orthot. Int., Bd. 34, Nr. 4, S. 449–460, 2010, ISSN: 1746-1553.
@article{Ludwigs2010,
title = {Biomechanical differences between two exoprosthetic hip joint systems during level walking},
author = {E. Ludwigs and M. Bellmann and T. Schmalz and S. Blumentritt},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L360015209&from=export},
doi = {10.3109/03093646.2010.499551},
issn = {1746-1553},
year = {2010},
date = {2010-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {34},
number = {4},
pages = {449–460},
address = {E. Ludwigs, Research Department, Otto Bock HealthCare GmbH, Hermann-Rein-Str. 2a, Gttingen, 37075, Germany},
abstract = {Previous studies have shown low end-user acceptance of a hip disarticulation style prosthesis and that the limitations of such prostheses, including poor gait pattern, socket discomfort, weight of the prosthesis, loss of mobility, instability and high energy consumption are a contributing factor. This study was initiated to determine if a new style of prosthetic hip joint could help to overcome some of the limitations concerning the gait pattern. The present study analyzed the gait pattern of six hip disarticulation amputee subjects. The objective was to compare two different prosthetic hip joints, both from Otto Bock HealthCare: The new Helix3D and the 7E7, which is based on the Canadian model proposed by McLaurin (1954). Kinematics and kinetics were recorded by an optoelectronic camera system with six CCD cameras and two force plates. During weight acceptance, the Helix3D extends considerably slower and reaches full extension later than the 7E7. The increased range of pelvic tilt observed with hip disarticulation amputees is significantly reduced (by 5±3 degrees) when using the Helix3D Hip Joint. In addition, this system showed increased stance phase knee joint flexion as well as increased maximum swing phase knee flexion angles compared to the 7E7. These motion analysis results show that the Helix3D Hip Joint can reduce gait abnormalities compared to the uniplanar design of the 7E7 hip joint. © 2010 ISPO.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}