TPress
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport},
pubstate = {published},
tppubtype = {article}
}
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {adult, amputation, article, biomechanics, carbon fiber, clinical article, cohort analysis, ComfyStep, female, foot prosthesis, ground reaction force, human, kinematics, kinetics, knee function, L.A.S.A.R. Posture device, male, medical device, post hoc analysis, prospective study, range of motion, statistical analysis, three dimensional printing, transtibial amputation},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {adult, amputation, article, Axtion, biomechanics, bone plate, cane, clinical article, frontal plane, gait, hip, hip adduction angle, hip angle, human, kinematics, limb prosthesis, male, middle aged, motion analysis system, Ossur Rheo, Ottobock C-Leg, Ottobock Genium, Ottobock X3, pelvic angle, pelvis lab angle, Pro-Flex Pivo, prosthesis implantation, radiographic parameter, Renegade XL, Rush Low Profile, Rush Renegade, software agent, torque, Triton, Triton Low Profile, trunk, trunk flexion angle, trunk lab angle, trunk pelvis angle, tyloxapol, unilateral transfemoral amputation, walker, walking speed, Wave Sport},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {adult, aged, article, biomechanics, clinical article, controlled study, effect size, foot prosthesis, human, kinematics, knee function, leg amputation, microprocessor, middle aged, motion analysis system, patient participation, range of motion, slope factor, transfemoral amputation, transtibial amputation, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2023
Trinler, U.; Heitzmann, D. W. W.; Hitzeroth, S.; Alimusaj, M.; Rehg, M.; Hogan, A.
In: Prosthet. Orthot. Int., Bd. 47, Nr. 1, S. 94–100, 2023, ISSN: 0309-3646.
@article{Trinler2023,
title = {Biomechanical comparison of a 3D-printed prosthetic foot with conventional feet in people with transtibial amputation: A prospective cohort study},
author = {U. Trinler and D. W. W. Heitzmann and S. Hitzeroth and M. Alimusaj and M. Rehg and A. Hogan},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2022874959&from=export},
doi = {10.1097/PXR.0000000000000180},
issn = {0309-3646},
year = {2023},
date = {2023-08-01},
journal = {Prosthet. Orthot. Int.},
volume = {47},
number = {1},
pages = {94–100},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {U. Trinler, BG Klinik Ludwigshafen, Ludwig-Guttmann-Str. 13, Ludwigshafen, Germany},
abstract = {Introduction: The method of 3D printing is increasingly gaining utilization in clinical applications and may support prosthetic fitting. The aim was to compare biomechanical outcomes of people with a transtibial amputation using a novel, individualizable, 3D-printed prosthetic foot (ComfyStep, Mecuris) with two conventional, widely used prosthetic feet during level ground walking using a 3D motion analysis system. Methods: Ten individuals with an unilateral transtibial amputation were fitted with 3 prosthetic feet (ComfyStep, Assure/Össur, DynamicMotion/Ottobock) using their current, well-fitting socket. They had at least 1 week of familiarization for each foot before gait analyses were conducted. Kinematics and kinetics as well as roll over shape (ROS) length and radius were calculated and compared between feet. Results: The sound side gait parameters of the participants were comparable when using different feet. However, there were differences on the affected side. The statistical analysis revealed that the 3D-printed foot differed significantly compared with the conventional feet in the following aspects: reduced range of motion, increased plantar flexion moment, reduced plantar flexion power, larger ROS radius, less favorable energy ratio, and higher overall stiffness. Conclusion: In principle, 3D-printed feet have advantages over conventional “off the shelf” feet, as their biomechanical characteristics could be adjusted more in detail according to the patient needs. Although, differences between conventional feet and the ComfyStep were shown. Whether these differences have a negative clinically relevant effect remains unclear. However, results suggest that commercially available 3D-printed feet should incorporate systematically better adjustments, for example, for stiffness, to enhance prosthetic performance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Darter, B. J.; Syrett, E. D.; Foreman, K. B.; Kubiak, E.; Sinclair, S.
In: PLoS ONE, Bd. 18, Nr. 2 February, 2023, ISSN: 1932-6203.
@article{Darter2023,
title = {Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP)},
author = {B. J. Darter and E. D. Syrett and K. B. Foreman and E. Kubiak and S. Sinclair},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2023020092&from=export},
doi = {10.1371/journal.pone.0281339},
issn = {1932-6203},
year = {2023},
date = {2023-01-01},
journal = {PLoS ONE},
volume = {18},
number = {2 February},
address = {B.J. Darter, Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States},
abstract = {Background A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation. Objective Examine changes in frontal plane movement patterns after BAP implantation. Methods Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12- months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss. Results Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation. Conclusions Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while withinparticipant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2022
Ernst, M.; Altenburg, B.; Schmalz, T.; Kannenberg, A.; Bellmann, M.
Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes Artikel
In: J. NeuroEng. Rehabil., Bd. 19, Nr. 1, 2022, ISSN: 1743-0003.
@article{Ernst2022,
title = {Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes},
author = {M. Ernst and B. Altenburg and T. Schmalz and A. Kannenberg and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2014862458&from=export},
doi = {10.1186/s12984-022-00983-y},
issn = {1743-0003},
year = {2022},
date = {2022-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {19},
number = {1},
address = {M. Ernst, Research Biomechanics, CR&S, Ottobock SE & Co. KGaA, Göttingen, Germany},
abstract = {Background: Prosthetic feet are prescribed for persons with a lower-limb amputation to restore lost mobility. However, due to limited adaptability of their ankles and springs, situations like walking on slopes or uneven ground remain challenging. This study investigated to what extent a microprocessor-controlled prosthetic foot (MPF) facilitates walking on slopes. Methods: Seven persons each with a unilateral transtibial amputation (TTA) and unilateral transfemoral amputation (TFA) as well as ten able-bodied subjects participated. Participants were studied while using a MPF and their prescribed standard feet with fixed ankle attachments. The study investigated ascending and descending a 10° slope. Kinematic and kinetic data were recorded with a motion capture system. Biomechanical parameters, in particular leg joint angles, shank orientation and external joint moments of the prosthetics side were calculated. Results: Prosthetic feet- and subject group-dependent joint angle and moment characteristics were observed for both situations. The MPF showed a larger and situation-dependent ankle range of motion compared to the standard feet. Furthermore, it remained in a dorsiflexed position during swing. While ascending, the MPF adapted the dorsiflexion moment and reduced the knee extension moment. At vertical shank orientation, it reduced the knee extension moment by 26% for TFA and 49% for TTA compared to the standard feet. For descending, differences between feet in the biomechanical knee characteristics were found for the TTA group, but not for the TFA group. At the vertical shank angle during slope descent, TTA demonstrated a behavior of the ankle moment similar to able-bodied controls when using the MPF. Conclusions: The studied MPF facilitated walking on slopes by adapting instantaneously to inclinations and, thus, easing the forward rotation of the leg over the prosthetic foot compared to standard feet with a fixed ankle attachment with amputation-level dependent effect sizes. It assumed a dorsiflexed ankle angle during swing, enabled a larger ankle range of motion and reduced the moments acting on the residual knee of TTA compared to the prescribed prosthetic standard feet. For individuals with TFA, the prosthetic knee joint seems to play a more crucial role for walking on ramps than the foot.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2019
Schmalz, T.; Schändlinger, J.; Schuler, M.; Bornmann, J.; Schirrmeister, B.; Kannenberg, A.; Ernst, M.
Biomechanical and metabolic effectiveness of an industrial exoskeleton for overhead work Artikel
In: Int. J. Environ. Res. Public Health, Bd. 16, Nr. 23, 2019, ISSN: 1661-7827.
@article{Schmalz2019,
title = {Biomechanical and metabolic effectiveness of an industrial exoskeleton for overhead work},
author = {T. Schmalz and J. Schändlinger and M. Schuler and J. Bornmann and B. Schirrmeister and A. Kannenberg and M. Ernst},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2003259386&from=export},
doi = {10.3390/ijerph16234792},
issn = {1661-7827},
year = {2019},
date = {2019-01-01},
journal = {Int. J. Environ. Res. Public Health},
volume = {16},
number = {23},
address = {T. Schmalz, Clinical Research & Services/Biomechanics, Otto Bock SE & Co. KGaA, Göttingen, Germany},
abstract = {Overhead work activities can lead to shoulder pain and serious musculoskeletal disorders (WMSD), such as rotator cuff injury and degeneration. Recently developed exoskeletons show promising results in supporting workers in such activities. In this study, a novel exoskeleton was investigated for two different overhead tasks with twelve participants. To investigate the effects of the device, electromyographic (EMG) signals of different shoulder and adjacent muscles as well as kinematic and metabolic parameters were analyzed with and without the exoskeleton. The mean EMG amplitude of all evaluated muscles was significantly reduced when the exoskeleton was used for the overhead tasks. This was accompanied by a reduction in both heart rate and oxygen rate. The kinematic analysis revealed small changes in the joint positions during the tasks. This study demonstrated the biomechanical and metabolic benefits of an exoskeleton designed to support overhead work activities. The results suggest improved physiological conditions and an unloading effect on the shoulder joint and muscles which are promising indicators that the exoskeleton may be a good solution to reduce shoulder WMSD among workers who carry out overhead tasks on a regular basis.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2018
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Whitehead, J. M. Aldridge; Wolf, E. J.; Scoville, C. R.; Wilken, J. M.
In: Clin. Orthop. Relat. Res., Bd. 472, Nr. 10, S. 3093–3101, 2014, ISSN: 0009-921X.
@article{AldridgeWhitehead2014,
title = {Does a Microprocessor-controlled Prosthetic Knee Affect Stair Ascent Strategies in Persons With Transfemoral Amputation?},
author = {J. M. Aldridge Whitehead and E. J. Wolf and C. R. Scoville and J. M. Wilken},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L608263443&from=export},
doi = {10.1007/s11999-014-3484-2},
issn = {0009-921X},
year = {2014},
date = {2014-10-01},
journal = {Clin. Orthop. Relat. Res.},
volume = {472},
number = {10},
pages = {3093–3101},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
address = {J.M. Wilken, DOD-VA Extremity Trauma and Amputation Center of Excellence, Center for the Intrepid, Department of Orthopaedics and Rehabilitation, Brooke Army Medical Center, 3551 Roger Brooke Drive, Ft Sam Houston, TX, United States},
abstract = {Background: Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2®) uses flexion/extension resistance to allow step-over-step stair ascent. Questions/Purposes: We compared self-selected stair ascent strategies between conventional and X2® prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2® users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2® users. Methods: Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2® knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy. Results: One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2® knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2010
Ludwigs, E.; Bellmann, M.; Schmalz, T.; Blumentritt, S.
Biomechanical differences between two exoprosthetic hip joint systems during level walking Artikel
In: Prosthet. Orthot. Int., Bd. 34, Nr. 4, S. 449–460, 2010, ISSN: 1746-1553.
@article{Ludwigs2010,
title = {Biomechanical differences between two exoprosthetic hip joint systems during level walking},
author = {E. Ludwigs and M. Bellmann and T. Schmalz and S. Blumentritt},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L360015209&from=export},
doi = {10.3109/03093646.2010.499551},
issn = {1746-1553},
year = {2010},
date = {2010-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {34},
number = {4},
pages = {449–460},
address = {E. Ludwigs, Research Department, Otto Bock HealthCare GmbH, Hermann-Rein-Str. 2a, Gttingen, 37075, Germany},
abstract = {Previous studies have shown low end-user acceptance of a hip disarticulation style prosthesis and that the limitations of such prostheses, including poor gait pattern, socket discomfort, weight of the prosthesis, loss of mobility, instability and high energy consumption are a contributing factor. This study was initiated to determine if a new style of prosthetic hip joint could help to overcome some of the limitations concerning the gait pattern. The present study analyzed the gait pattern of six hip disarticulation amputee subjects. The objective was to compare two different prosthetic hip joints, both from Otto Bock HealthCare: The new Helix3D and the 7E7, which is based on the Canadian model proposed by McLaurin (1954). Kinematics and kinetics were recorded by an optoelectronic camera system with six CCD cameras and two force plates. During weight acceptance, the Helix3D extends considerably slower and reaches full extension later than the 7E7. The increased range of pelvic tilt observed with hip disarticulation amputees is significantly reduced (by 5±3 degrees) when using the Helix3D Hip Joint. In addition, this system showed increased stance phase knee joint flexion as well as increased maximum swing phase knee flexion angles compared to the 7E7. These motion analysis results show that the Helix3D Hip Joint can reduce gait abnormalities compared to the uniplanar design of the 7E7 hip joint. © 2010 ISPO.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}