TPress
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
Abstract | Links | Schlagwörter: ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication},
pubstate = {published},
tppubtype = {article}
}
2018
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2014
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
Abstract | Links | Schlagwörter: ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {ankle prosthesis, below knee prosthesis, C-leg, dermatitis, diabetes mellitus, diabetic patient, fluid control knee, gait, human, Hydraulic knee, iWALK, joint stability, knee function, leg amputation, leg prosthesis, Manual locking Knee, microprocessor knee, mobilization, partial foot amputation, patellar tendon bearing socket, peripheral neuropathy, Polycentric knee, Power Knee, priority journal, Proprio foot, review, Rheo leg, sensory feedback, Single-axis knee, skin abrasion, synovial bursa, total surface bearing socket, treatment indication},
pubstate = {published},
tppubtype = {article}
}
2018
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Chitragari, G.; Mahler, D. B.; Sumpio, B. J.; Blume, P. A.; Sumpio, B. E.
Prosthetic options available for the diabetic lower limb amputee Artikel
In: Clin. Podiatr. Med. Surg., Bd. 31, Nr. 1, S. 174–185, 2014, ISSN: 1558-2302.
@article{Chitragari2014,
title = {Prosthetic options available for the diabetic lower limb amputee},
author = {G. Chitragari and D. B. Mahler and B. J. Sumpio and P. A. Blume and B. E. Sumpio},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343216&from=export},
doi = {10.1016/j.cpm.2013.09.008},
issn = {1558-2302},
year = {2014},
date = {2014-01-01},
journal = {Clin. Podiatr. Med. Surg.},
volume = {31},
number = {1},
pages = {174–185},
address = {B.E. Sumpio, Yale University School of Medicine, 333 Cedar Street, BB 204, New Haven, CT 06520-8062, United States},
abstract = {Although the rate of lower limb amputation in patients with diabetes is decreasing, amputation still remains a major complication of diabetes. Prosthetics have been long used to help amputees ambulate. The last decade has seen many advances in prostheses with the enhanced understanding of the mechanics of ambulation and improved use of technology. This review describes the different types of prosthetic options available for below knee, ankle, and foot amputees, emphasizing the latest advances in prosthetic design. © 2014 Elsevier Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}