TPress
Volkmar, R.; Dosen, S.; Gonzalez-Vargas, J.; Baum, M.; Markovic, M.
Improving bimanual interaction with a prosthesis using semi-autonomous control Artikel
In: J. NeuroEng. Rehabil., Bd. 16, Nr. 1, 2019, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, analytical equipment, article, bimanual interaction, controlled study, female, hand prosthesis, human, human experiment, inertial sensor, limb movement, male, motor control, motor performance, outcome assessment, priority journal, prosthesis, prosthesis design, semi autonomous control, sensor, task performance, vibrotactor, workload
@article{Volkmar2019,
title = {Improving bimanual interaction with a prosthesis using semi-autonomous control},
author = {R. Volkmar and S. Dosen and J. Gonzalez-Vargas and M. Baum and M. Markovic},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L629849607&from=export},
doi = {10.1186/s12984-019-0617-6},
issn = {1743-0003},
year = {2019},
date = {2019-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {16},
number = {1},
address = {M. Markovic, Department of Trauma Surgery Orthopedics and Plastic Surgery, University Medical Center Göttingen, Von-Siebold-Str. 3, Göttingen, Germany},
abstract = {Background: The loss of a hand is a traumatic experience that substantially compromises an individual's capability to interact with his environment. The myoelectric prostheses are state-of-the-art (SoA) functional replacements for the lost limbs. Their overall mechanical design and dexterity have improved over the last few decades, but the users have not been able to fully exploit these advances because of the lack of effective and intuitive control. Bimanual tasks are particularly challenging for an amputee since prosthesis control needs to be coordinated with the movement of the sound limb. So far, the bimanual activities have been often neglected by the prosthetic research community. Methods: We present a novel method to prosthesis control, which uses a semi-autonomous approach in order to simplify bimanual interactions. The approach supplements the commercial SoA two-channel myoelectric control with two additional sensors. Two inertial measurement units were attached to the prosthesis and the sound hand to detect the movement of both limbs. Once a bimanual interaction is detected, the system mimics the coordination strategies of able-bodied subjects to automatically adjust the prosthesis wrist rotation (pronation, supination) and grip type (lateral, palmar) to assist the sound hand during a bimanual task. The system has been evaluated in eight able-bodied subjects performing functional uni- A nd bi-manual tasks using the novel method and SoA two-channel myocontrol. The outcome measures were time to accomplish the task, semi-autonomous system misclassification rate, subjective rating of intuitiveness, and perceived workload (NASA TLX). Results: The results demonstrated that the novel control interface substantially outperformed the SoA myoelectric control. While using the semi-autonomous control the time to accomplish the task and the perceived workload decreased for 25 and 27%, respectively, while the subjects rated the system as more intuitive then SoA myocontrol. Conclusions: The novel system uses minimal additional hardware (two inertial sensors) and simple processing and it is therefore convenient for practical implementation. By using the proposed control scheme, the prosthesis assists the user's sound hand in performing bimanual interactions while decreasing cognitive burden.},
keywords = {adult, analytical equipment, article, bimanual interaction, controlled study, female, hand prosthesis, human, human experiment, inertial sensor, limb movement, male, motor control, motor performance, outcome assessment, priority journal, prosthesis, prosthesis design, semi autonomous control, sensor, task performance, vibrotactor, workload},
pubstate = {published},
tppubtype = {article}
}
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
Abstract | Links | Schlagwörter: adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed},
pubstate = {published},
tppubtype = {article}
}
2019
Volkmar, R.; Dosen, S.; Gonzalez-Vargas, J.; Baum, M.; Markovic, M.
Improving bimanual interaction with a prosthesis using semi-autonomous control Artikel
In: J. NeuroEng. Rehabil., Bd. 16, Nr. 1, 2019, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, analytical equipment, article, bimanual interaction, controlled study, female, hand prosthesis, human, human experiment, inertial sensor, limb movement, male, motor control, motor performance, outcome assessment, priority journal, prosthesis, prosthesis design, semi autonomous control, sensor, task performance, vibrotactor, workload
@article{Volkmar2019,
title = {Improving bimanual interaction with a prosthesis using semi-autonomous control},
author = {R. Volkmar and S. Dosen and J. Gonzalez-Vargas and M. Baum and M. Markovic},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L629849607&from=export},
doi = {10.1186/s12984-019-0617-6},
issn = {1743-0003},
year = {2019},
date = {2019-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {16},
number = {1},
address = {M. Markovic, Department of Trauma Surgery Orthopedics and Plastic Surgery, University Medical Center Göttingen, Von-Siebold-Str. 3, Göttingen, Germany},
abstract = {Background: The loss of a hand is a traumatic experience that substantially compromises an individual's capability to interact with his environment. The myoelectric prostheses are state-of-the-art (SoA) functional replacements for the lost limbs. Their overall mechanical design and dexterity have improved over the last few decades, but the users have not been able to fully exploit these advances because of the lack of effective and intuitive control. Bimanual tasks are particularly challenging for an amputee since prosthesis control needs to be coordinated with the movement of the sound limb. So far, the bimanual activities have been often neglected by the prosthetic research community. Methods: We present a novel method to prosthesis control, which uses a semi-autonomous approach in order to simplify bimanual interactions. The approach supplements the commercial SoA two-channel myoelectric control with two additional sensors. Two inertial measurement units were attached to the prosthesis and the sound hand to detect the movement of both limbs. Once a bimanual interaction is detected, the system mimics the coordination strategies of able-bodied subjects to automatically adjust the prosthesis wrist rotation (pronation, supination) and grip type (lateral, palmar) to assist the sound hand during a bimanual task. The system has been evaluated in eight able-bodied subjects performing functional uni- A nd bi-manual tasks using the novel method and SoA two-channel myocontrol. The outcome measures were time to accomplish the task, semi-autonomous system misclassification rate, subjective rating of intuitiveness, and perceived workload (NASA TLX). Results: The results demonstrated that the novel control interface substantially outperformed the SoA myoelectric control. While using the semi-autonomous control the time to accomplish the task and the perceived workload decreased for 25 and 27%, respectively, while the subjects rated the system as more intuitive then SoA myocontrol. Conclusions: The novel system uses minimal additional hardware (two inertial sensors) and simple processing and it is therefore convenient for practical implementation. By using the proposed control scheme, the prosthesis assists the user's sound hand in performing bimanual interactions while decreasing cognitive burden.},
keywords = {adult, analytical equipment, article, bimanual interaction, controlled study, female, hand prosthesis, human, human experiment, inertial sensor, limb movement, male, motor control, motor performance, outcome assessment, priority journal, prosthesis, prosthesis design, semi autonomous control, sensor, task performance, vibrotactor, workload},
pubstate = {published},
tppubtype = {article}
}
2004
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
Abstract | Links | Schlagwörter: adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {adult, aged, article, Camp, cerebrovascular accident, chronic disease, climbing, clinical article, clinical trial, controlled clinical trial, controlled study, crossover procedure, Distrac, Dynafo, female, gait disorder, human, male, motivation, motor performance, orthosis, Ottobock, randomized controlled trial, scoring system, self esteem, standing, statistical analysis, task performance, walking speed},
pubstate = {published},
tppubtype = {article}
}
2019
Volkmar, R.; Dosen, S.; Gonzalez-Vargas, J.; Baum, M.; Markovic, M.
Improving bimanual interaction with a prosthesis using semi-autonomous control Artikel
In: J. NeuroEng. Rehabil., Bd. 16, Nr. 1, 2019, ISSN: 1743-0003.
@article{Volkmar2019,
title = {Improving bimanual interaction with a prosthesis using semi-autonomous control},
author = {R. Volkmar and S. Dosen and J. Gonzalez-Vargas and M. Baum and M. Markovic},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L629849607&from=export},
doi = {10.1186/s12984-019-0617-6},
issn = {1743-0003},
year = {2019},
date = {2019-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {16},
number = {1},
address = {M. Markovic, Department of Trauma Surgery Orthopedics and Plastic Surgery, University Medical Center Göttingen, Von-Siebold-Str. 3, Göttingen, Germany},
abstract = {Background: The loss of a hand is a traumatic experience that substantially compromises an individual's capability to interact with his environment. The myoelectric prostheses are state-of-the-art (SoA) functional replacements for the lost limbs. Their overall mechanical design and dexterity have improved over the last few decades, but the users have not been able to fully exploit these advances because of the lack of effective and intuitive control. Bimanual tasks are particularly challenging for an amputee since prosthesis control needs to be coordinated with the movement of the sound limb. So far, the bimanual activities have been often neglected by the prosthetic research community. Methods: We present a novel method to prosthesis control, which uses a semi-autonomous approach in order to simplify bimanual interactions. The approach supplements the commercial SoA two-channel myoelectric control with two additional sensors. Two inertial measurement units were attached to the prosthesis and the sound hand to detect the movement of both limbs. Once a bimanual interaction is detected, the system mimics the coordination strategies of able-bodied subjects to automatically adjust the prosthesis wrist rotation (pronation, supination) and grip type (lateral, palmar) to assist the sound hand during a bimanual task. The system has been evaluated in eight able-bodied subjects performing functional uni- A nd bi-manual tasks using the novel method and SoA two-channel myocontrol. The outcome measures were time to accomplish the task, semi-autonomous system misclassification rate, subjective rating of intuitiveness, and perceived workload (NASA TLX). Results: The results demonstrated that the novel control interface substantially outperformed the SoA myoelectric control. While using the semi-autonomous control the time to accomplish the task and the perceived workload decreased for 25 and 27%, respectively, while the subjects rated the system as more intuitive then SoA myocontrol. Conclusions: The novel system uses minimal additional hardware (two inertial sensors) and simple processing and it is therefore convenient for practical implementation. By using the proposed control scheme, the prosthesis assists the user's sound hand in performing bimanual interactions while decreasing cognitive burden.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2004
Wit, D. C. M.; Buurke, J. H.; Nijlant, J. M. M.; IJzerman, M. J.; Hermens, H. J.
In: Clin. Rehabil., Bd. 18, Nr. 5, S. 550–557, 2004, ISSN: 0269-2155.
@article{Wit2004,
title = {The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: A randomized controlled trial},
author = {D. C. M. Wit and J. H. Buurke and J. M. M. Nijlant and M. J. IJzerman and H. J. Hermens},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L39076880&from=export},
doi = {10.1191/0269215504cr770oa},
issn = {0269-2155},
year = {2004},
date = {2004-01-01},
journal = {Clin. Rehabil.},
volume = {18},
number = {5},
pages = {550–557},
address = {D.C.M. de Wit, Roessingh Research and Development, Roessinghbleekweg 33B, 7522 AH Enschede, Netherlands},
abstract = {Objective: Regaining walking ability is a major goal during the rehabilitation of stroke patients. To support this process an ankle-foot orthosis (AFC) is often prescribed. The aim of this study is to investigate the effect of an AFO on walking ability in chronic stroke patients. Design: Cross-over design with randomization for the interventions. Methods: Twenty chronic stroke patients, wearing an AFO for at least six months, were included. Walking ability was operationalized as comfortable walking speed, scores on the timed up and go (TUG) test and stairs test. Patients were measured with and without their AFO, the sequence of which was randomized. Additionally, subjective impressions of self-confidence and difficulty of the tasks were scored. Clinically relevant differences based on literature were defined for walking speed (20 cm/s), the TUG test (10 s). Gathered data were statistically analysed using a paired t-test. Results: The mean difference in favour of the AFO in walking speed was 4.8 cm/s (95% CI 0.85-8.7), in the TUG test 3.6 s (95% CI 2.4-4.8) and in the stairs test 8.6 s (95% CI 3.1-14.1). Sixty-five per cent of the patients experienced less difficulty and 70% of the patients felt more self-confident while wearing the AFO. Conclusions: The effect of an AFO on walking ability is statistically significant, but compared with the a priori defined differences it is too small to be clinically relevant. The effect on self-confidence suggests that other factors might play an important role in the motivation to use an AFO. © Arnold 2004.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}