TPress
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
Hausmann, J.; Sweeney-Reed, C. M.; Sobieray, U.; Matzke, M.; Heinze, H. -J.; Voges, J.; Buentjen, L.
In: J. NeuroEng. Rehabil., Bd. 12, Nr. 1, 2015, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: ActiGait, adult, article, case report, cerebrovascular accident, clinical evaluation, fatigue, feasibility study, female, functional electrical stimulation, gait, human, male, middle aged, multiple sclerosis, pain, peroneus nerve, peroneus nerve paralysis, priority journal, quality of life, rehabilitation care, therapy effect, transcutaneous electrical nerve stimulator, walking speed
@article{Hausmann2015,
title = {Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study},
author = {J. Hausmann and C. M. Sweeney-Reed and U. Sobieray and M. Matzke and H. -J. Heinze and J. Voges and L. Buentjen},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L606904897&from=export},
doi = {10.1186/s12984-015-0096-3},
issn = {1743-0003},
year = {2015},
date = {2015-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {12},
number = {1},
address = {J. Hausmann, Department of Neurology, Otto-von-Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, Germany},
abstract = {Background: Gait dysfunction due to lower limb central paralysis, frequently involving drop foot, is a common cause of disability in multiple sclerosis and has been treated with transcutaneous functional electrical stimulation (FES). We provide here the first report of 4-channel semi-implantable FES of the peroneal nerve which has been successfully used for rehabilitation in patients following stroke. Methods: FES was implemented via a 4-channel semi-implantable closed-loop system (ActiGait®, ©Ottobock), generating dorsiflexion in drop foot. Walking distance, gait symmetry (temporospatial gait analyses, Vicon Motion Systems®), gait velocity (10 m walking test) and quality of life (SF-36 questionnaire) were measured to evaluate the therapeutic benefit of this system in two patients with progressive MS. Results: Walking distance increased from 517 to 1884 m in Patient 1 and from 52 to 506 m in Patient 2. Gait velocity did not change significantly in Patient 1 and increased from 0.6 to 0.8 m/s in Patient 2. Maximum deviations of center of mass from the midline to each side changed significantly after 3 months of stimulation compared to baseline, decreasing from 15 to 12 mm in Patient 1 and from 47 to 37 mm in Patient 2. Both patients experienced reduced pain and fatigue and benefits to quality of life. Adverse events did not occur during the observation period. Conclusion: We conclude that implantable 4-channel FES systems are not only feasible but present a promising new alternative for treating central drop foot in MS patients.},
keywords = {ActiGait, adult, article, case report, cerebrovascular accident, clinical evaluation, fatigue, feasibility study, female, functional electrical stimulation, gait, human, male, middle aged, multiple sclerosis, pain, peroneus nerve, peroneus nerve paralysis, priority journal, quality of life, rehabilitation care, therapy effect, transcutaneous electrical nerve stimulator, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {above knee prosthesis, adult, article, C-leg, Challenger, clinical article, controlled study, data analysis software, degree of freedom, endoprosthesis, feasibility study, foot prosthesis, gait, gait analysis system, gait deviation index, Genium X3, Germany, gold standard, human, kinematics, kinetics, knee angle, knee function, knee prosthesis, leg amputation, male, microprocessor, middle aged, motion analysis system, motion sensor, SPSS, strain gauge transducer, Taleo, thigh, Triton, tyloxapol, walk test, walking speed},
pubstate = {published},
tppubtype = {article}
}
2015
Hausmann, J.; Sweeney-Reed, C. M.; Sobieray, U.; Matzke, M.; Heinze, H. -J.; Voges, J.; Buentjen, L.
In: J. NeuroEng. Rehabil., Bd. 12, Nr. 1, 2015, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: ActiGait, adult, article, case report, cerebrovascular accident, clinical evaluation, fatigue, feasibility study, female, functional electrical stimulation, gait, human, male, middle aged, multiple sclerosis, pain, peroneus nerve, peroneus nerve paralysis, priority journal, quality of life, rehabilitation care, therapy effect, transcutaneous electrical nerve stimulator, walking speed
@article{Hausmann2015,
title = {Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study},
author = {J. Hausmann and C. M. Sweeney-Reed and U. Sobieray and M. Matzke and H. -J. Heinze and J. Voges and L. Buentjen},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L606904897&from=export},
doi = {10.1186/s12984-015-0096-3},
issn = {1743-0003},
year = {2015},
date = {2015-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {12},
number = {1},
address = {J. Hausmann, Department of Neurology, Otto-von-Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, Germany},
abstract = {Background: Gait dysfunction due to lower limb central paralysis, frequently involving drop foot, is a common cause of disability in multiple sclerosis and has been treated with transcutaneous functional electrical stimulation (FES). We provide here the first report of 4-channel semi-implantable FES of the peroneal nerve which has been successfully used for rehabilitation in patients following stroke. Methods: FES was implemented via a 4-channel semi-implantable closed-loop system (ActiGait®, ©Ottobock), generating dorsiflexion in drop foot. Walking distance, gait symmetry (temporospatial gait analyses, Vicon Motion Systems®), gait velocity (10 m walking test) and quality of life (SF-36 questionnaire) were measured to evaluate the therapeutic benefit of this system in two patients with progressive MS. Results: Walking distance increased from 517 to 1884 m in Patient 1 and from 52 to 506 m in Patient 2. Gait velocity did not change significantly in Patient 1 and increased from 0.6 to 0.8 m/s in Patient 2. Maximum deviations of center of mass from the midline to each side changed significantly after 3 months of stimulation compared to baseline, decreasing from 15 to 12 mm in Patient 1 and from 47 to 37 mm in Patient 2. Both patients experienced reduced pain and fatigue and benefits to quality of life. Adverse events did not occur during the observation period. Conclusion: We conclude that implantable 4-channel FES systems are not only feasible but present a promising new alternative for treating central drop foot in MS patients.},
keywords = {ActiGait, adult, article, case report, cerebrovascular accident, clinical evaluation, fatigue, feasibility study, female, functional electrical stimulation, gait, human, male, middle aged, multiple sclerosis, pain, peroneus nerve, peroneus nerve paralysis, priority journal, quality of life, rehabilitation care, therapy effect, transcutaneous electrical nerve stimulator, walking speed},
pubstate = {published},
tppubtype = {article}
}
2023
Manz, Sabina; Seifert, Dirk; Altenburg, Bjoern; Schmalz, Thomas; Dosen, Strahinja; Gonzalez-Vargas, Jose
In: Clinical Biomechanics, Bd. 106, S. 105988, 2023, ISSN: 0268-0033.
@article{Manz2023,
title = {Using embedded prosthesis sensors for clinical gait analyses in people with lower limb amputation: A feasibility study},
author = {Sabina Manz and Dirk Seifert and Bjoern Altenburg and Thomas Schmalz and Strahinja Dosen and Jose Gonzalez-Vargas},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2024655048&from=export},
doi = {10.1016/j.clinbiomech.2023.105988},
issn = {0268-0033},
year = {2023},
date = {2023-06-01},
journal = {Clinical Biomechanics},
volume = {106},
pages = {105988},
publisher = {Elsevier BV},
address = {J. Gonzalez-Vargas, Ottobock SE & Co. KGaA, Duderstadt, Germany},
abstract = {Background: Biomechanical gait analyses are typically performed in laboratory settings, and are associated with limitations due to space, marker placement, and tasks that are not representative of the real-world usage of lower limb prostheses. Therefore, the purpose of this study was to investigate the possibility of accurately measuring gait parameters using embedded sensors in a microprocessor-controlled knee joint. Methods: Ten participants were recruited for this study and equipped with a Genium X3 prosthetic knee joint. They performed level walking, stair/ramp descent, and ascent. During these tasks, kinematics and kinetics (sagittal knee and thigh segment angle, and knee moment) were recorded using an optical motion capture system and force plates (gold standard), as well as the prosthesis-embedded sensors. Root mean square errors, relative errors, correlation coefficients, and discrete outcome variables of clinical relevance were calculated and compared between the gold standard and the embedded sensors. Findings: The average root mean square errors were found to be 0.6°, 5.3°, and 0.08 Nm/kg, for the knee angle, thigh angle, and knee moment, respectively. The average relative errors were 0.75% for the knee angle, 11.67% for the thigh angle, and 9.66%, for the knee moment. The discrete outcome variables showed small but significant differences between the two measurement systems for a number of tasks (higher differences only at the thigh). Interpretation: The findings highlight the potential of prosthesis-embedded sensors to accurately measure gait parameters across a wide range of tasks. This paves the way for assessing prosthesis performance in realistic environments outside the lab.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2015
Hausmann, J.; Sweeney-Reed, C. M.; Sobieray, U.; Matzke, M.; Heinze, H. -J.; Voges, J.; Buentjen, L.
In: J. NeuroEng. Rehabil., Bd. 12, Nr. 1, 2015, ISSN: 1743-0003.
@article{Hausmann2015,
title = {Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study},
author = {J. Hausmann and C. M. Sweeney-Reed and U. Sobieray and M. Matzke and H. -J. Heinze and J. Voges and L. Buentjen},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L606904897&from=export},
doi = {10.1186/s12984-015-0096-3},
issn = {1743-0003},
year = {2015},
date = {2015-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {12},
number = {1},
address = {J. Hausmann, Department of Neurology, Otto-von-Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, Germany},
abstract = {Background: Gait dysfunction due to lower limb central paralysis, frequently involving drop foot, is a common cause of disability in multiple sclerosis and has been treated with transcutaneous functional electrical stimulation (FES). We provide here the first report of 4-channel semi-implantable FES of the peroneal nerve which has been successfully used for rehabilitation in patients following stroke. Methods: FES was implemented via a 4-channel semi-implantable closed-loop system (ActiGait®, ©Ottobock), generating dorsiflexion in drop foot. Walking distance, gait symmetry (temporospatial gait analyses, Vicon Motion Systems®), gait velocity (10 m walking test) and quality of life (SF-36 questionnaire) were measured to evaluate the therapeutic benefit of this system in two patients with progressive MS. Results: Walking distance increased from 517 to 1884 m in Patient 1 and from 52 to 506 m in Patient 2. Gait velocity did not change significantly in Patient 1 and increased from 0.6 to 0.8 m/s in Patient 2. Maximum deviations of center of mass from the midline to each side changed significantly after 3 months of stimulation compared to baseline, decreasing from 15 to 12 mm in Patient 1 and from 47 to 37 mm in Patient 2. Both patients experienced reduced pain and fatigue and benefits to quality of life. Adverse events did not occur during the observation period. Conclusion: We conclude that implantable 4-channel FES systems are not only feasible but present a promising new alternative for treating central drop foot in MS patients.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}