TPress
Taboga, P.; Beck, O. N.; Grabowski, A. M.
In: PLoS ONE, Bd. 15, Nr. 2, 2020, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, aerial time, article, athlete, below knee amputation, below knee prosthesis, biomechanics, clinical article, contact length, contact time, controlled study, Freedom Innovations Catapult FX6, ground reaction force, human, male, Ossur Flex-Foot Cheetah Xtend, Ottobock 1E90 Sprinter, physical parameters, prosthesis design, prosthetic height, prosthetic shape, prosthetic stiffness, running, running specific prosthesis, running speed, standing, vertical stiffness, young adult
@article{Taboga2020,
title = {Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations},
author = {P. Taboga and O. N. Beck and A. M. Grabowski},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005026109&from=export},
doi = {10.1371/journal.pone.0229035},
issn = {1932-6203},
year = {2020},
date = {2020-01-01},
journal = {PLoS ONE},
volume = {15},
number = {2},
address = {P. Taboga, Department of Kinesiology, California State University, Sacramento, CA, United States},
abstract = {Running-specific prostheses (RSPs) have facilitated an athlete with bilateral transtibial amputations to compete in the Olympic Games. However, the performance effects of using RSPs compared to biological legs remains controversial. Further, the use of different prosthetic configurations such as shape, stiffness, and height likely influence performance. We determined the effects of using 15 different RSP configurations on the maximum speed of five male athletes with bilateral transtibial amputations. These athletes performed sets of running trials up to maximum speed using three different RSP models (Freedom Innovations Catapult FX6, Össur Flex-Foot Cheetah Xtend and Ottobock 1E90 Sprinter) each with five combinations of stiffness category and height. We measured ground reaction forces during each maximum speed trial to determine the biomechanical parameters associated with different RSP configurations and maximum sprinting speeds. Use of the J-shaped Cheetah Xtend and 1E90 Sprinter RSPs resulted in 8.3% and 8.0% (p<0.001) faster maximum speeds compared to the use of the C-shaped Catapult FX6 RSPs, respectively. Neither RSP stiffness expressed as a category (p = 0.836) nor as kNm-1 (p = 0.916) affected maximum speed. Further, prosthetic height had no effect on maximum speed (p = 0.762). Faster maximum speeds were associated with reduced ground contact time, aerial time, and overall leg stiffness, as well as with greater stance-average vertical ground reaction force, contact length, and vertical stiffness (p = 0.015 for aerial time, p<0.001 for all other variables). RSP shape, but not stiffness or height, influences the maximum speed of athletes with bilateral transtibial amputations.},
keywords = {adult, aerial time, article, athlete, below knee amputation, below knee prosthesis, biomechanics, clinical article, contact length, contact time, controlled study, Freedom Innovations Catapult FX6, ground reaction force, human, male, Ossur Flex-Foot Cheetah Xtend, Ottobock 1E90 Sprinter, physical parameters, prosthesis design, prosthetic height, prosthetic shape, prosthetic stiffness, running, running specific prosthesis, running speed, standing, vertical stiffness, young adult},
pubstate = {published},
tppubtype = {article}
}
Fligge, N.; Urbanek, H.; der Smagt, P. Van
Relation between object properties and EMG during reaching to grasp Artikel
In: J. Electromyogr. Kinesiology, Bd. 23, Nr. 2, S. 402–410, 2013, ISSN: 1873-5711.
Abstract | Links | Schlagwörter: 13E200, adult, article, controlled study, electrode, electromyogram, female, forearm, grasping, hand function, hand muscle, human, human experiment, male, normal human, physical parameters, priority journal, size, weight
@article{Fligge2013,
title = {Relation between object properties and EMG during reaching to grasp},
author = {N. Fligge and H. Urbanek and P. Van der Smagt},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L52331059&from=export},
doi = {10.1016/j.jelekin.2012.10.010},
issn = {1873-5711},
year = {2013},
date = {2013-01-01},
journal = {J. Electromyogr. Kinesiology},
volume = {23},
number = {2},
pages = {402–410},
address = {N. Fligge, German Aerospace Center (DLR), Center for Robotics and Mechatronics, Muenchner Strasse 20, D-82234 Oberpfaffenhofen-Wessling, Germany},
abstract = {In order to stably grasp an object with an artificial hand, a priori knowledge of the object's properties is a major advantage, especially to ensure subsequent manipulation of the object held by the hand. This is also true for hand prostheses: pre-shaping of the hand while approaching the object, similar to able-bodied, allows the wearer for a much faster and more intuitive way of handling and grasping an object. For hand prostheses, it would be advantageous to obtain this information about object properties from a surface electromyography (sEMG) signal, which is already present and used to control the active prosthetic hand.We describe experiments in which human subjects grasp different objects at different positions while their muscular activity is recorded through eight sEMG electrodes placed on the forearm. Results show that sEMG data, gathered before the hand is in contact with the object, can be used to obtain relevant information on object properties such as size and weight. © 2012 Elsevier Ltd.},
keywords = {13E200, adult, article, controlled study, electrode, electromyogram, female, forearm, grasping, hand function, hand muscle, human, human experiment, male, normal human, physical parameters, priority journal, size, weight},
pubstate = {published},
tppubtype = {article}
}
2020
Taboga, P.; Beck, O. N.; Grabowski, A. M.
In: PLoS ONE, Bd. 15, Nr. 2, 2020, ISSN: 1932-6203.
Abstract | Links | Schlagwörter: adult, aerial time, article, athlete, below knee amputation, below knee prosthesis, biomechanics, clinical article, contact length, contact time, controlled study, Freedom Innovations Catapult FX6, ground reaction force, human, male, Ossur Flex-Foot Cheetah Xtend, Ottobock 1E90 Sprinter, physical parameters, prosthesis design, prosthetic height, prosthetic shape, prosthetic stiffness, running, running specific prosthesis, running speed, standing, vertical stiffness, young adult
@article{Taboga2020,
title = {Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations},
author = {P. Taboga and O. N. Beck and A. M. Grabowski},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005026109&from=export},
doi = {10.1371/journal.pone.0229035},
issn = {1932-6203},
year = {2020},
date = {2020-01-01},
journal = {PLoS ONE},
volume = {15},
number = {2},
address = {P. Taboga, Department of Kinesiology, California State University, Sacramento, CA, United States},
abstract = {Running-specific prostheses (RSPs) have facilitated an athlete with bilateral transtibial amputations to compete in the Olympic Games. However, the performance effects of using RSPs compared to biological legs remains controversial. Further, the use of different prosthetic configurations such as shape, stiffness, and height likely influence performance. We determined the effects of using 15 different RSP configurations on the maximum speed of five male athletes with bilateral transtibial amputations. These athletes performed sets of running trials up to maximum speed using three different RSP models (Freedom Innovations Catapult FX6, Össur Flex-Foot Cheetah Xtend and Ottobock 1E90 Sprinter) each with five combinations of stiffness category and height. We measured ground reaction forces during each maximum speed trial to determine the biomechanical parameters associated with different RSP configurations and maximum sprinting speeds. Use of the J-shaped Cheetah Xtend and 1E90 Sprinter RSPs resulted in 8.3% and 8.0% (p<0.001) faster maximum speeds compared to the use of the C-shaped Catapult FX6 RSPs, respectively. Neither RSP stiffness expressed as a category (p = 0.836) nor as kNm-1 (p = 0.916) affected maximum speed. Further, prosthetic height had no effect on maximum speed (p = 0.762). Faster maximum speeds were associated with reduced ground contact time, aerial time, and overall leg stiffness, as well as with greater stance-average vertical ground reaction force, contact length, and vertical stiffness (p = 0.015 for aerial time, p<0.001 for all other variables). RSP shape, but not stiffness or height, influences the maximum speed of athletes with bilateral transtibial amputations.},
keywords = {adult, aerial time, article, athlete, below knee amputation, below knee prosthesis, biomechanics, clinical article, contact length, contact time, controlled study, Freedom Innovations Catapult FX6, ground reaction force, human, male, Ossur Flex-Foot Cheetah Xtend, Ottobock 1E90 Sprinter, physical parameters, prosthesis design, prosthetic height, prosthetic shape, prosthetic stiffness, running, running specific prosthesis, running speed, standing, vertical stiffness, young adult},
pubstate = {published},
tppubtype = {article}
}
2013
Fligge, N.; Urbanek, H.; der Smagt, P. Van
Relation between object properties and EMG during reaching to grasp Artikel
In: J. Electromyogr. Kinesiology, Bd. 23, Nr. 2, S. 402–410, 2013, ISSN: 1873-5711.
Abstract | Links | Schlagwörter: 13E200, adult, article, controlled study, electrode, electromyogram, female, forearm, grasping, hand function, hand muscle, human, human experiment, male, normal human, physical parameters, priority journal, size, weight
@article{Fligge2013,
title = {Relation between object properties and EMG during reaching to grasp},
author = {N. Fligge and H. Urbanek and P. Van der Smagt},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L52331059&from=export},
doi = {10.1016/j.jelekin.2012.10.010},
issn = {1873-5711},
year = {2013},
date = {2013-01-01},
journal = {J. Electromyogr. Kinesiology},
volume = {23},
number = {2},
pages = {402–410},
address = {N. Fligge, German Aerospace Center (DLR), Center for Robotics and Mechatronics, Muenchner Strasse 20, D-82234 Oberpfaffenhofen-Wessling, Germany},
abstract = {In order to stably grasp an object with an artificial hand, a priori knowledge of the object's properties is a major advantage, especially to ensure subsequent manipulation of the object held by the hand. This is also true for hand prostheses: pre-shaping of the hand while approaching the object, similar to able-bodied, allows the wearer for a much faster and more intuitive way of handling and grasping an object. For hand prostheses, it would be advantageous to obtain this information about object properties from a surface electromyography (sEMG) signal, which is already present and used to control the active prosthetic hand.We describe experiments in which human subjects grasp different objects at different positions while their muscular activity is recorded through eight sEMG electrodes placed on the forearm. Results show that sEMG data, gathered before the hand is in contact with the object, can be used to obtain relevant information on object properties such as size and weight. © 2012 Elsevier Ltd.},
keywords = {13E200, adult, article, controlled study, electrode, electromyogram, female, forearm, grasping, hand function, hand muscle, human, human experiment, male, normal human, physical parameters, priority journal, size, weight},
pubstate = {published},
tppubtype = {article}
}
2020
Taboga, P.; Beck, O. N.; Grabowski, A. M.
In: PLoS ONE, Bd. 15, Nr. 2, 2020, ISSN: 1932-6203.
@article{Taboga2020,
title = {Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations},
author = {P. Taboga and O. N. Beck and A. M. Grabowski},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2005026109&from=export},
doi = {10.1371/journal.pone.0229035},
issn = {1932-6203},
year = {2020},
date = {2020-01-01},
journal = {PLoS ONE},
volume = {15},
number = {2},
address = {P. Taboga, Department of Kinesiology, California State University, Sacramento, CA, United States},
abstract = {Running-specific prostheses (RSPs) have facilitated an athlete with bilateral transtibial amputations to compete in the Olympic Games. However, the performance effects of using RSPs compared to biological legs remains controversial. Further, the use of different prosthetic configurations such as shape, stiffness, and height likely influence performance. We determined the effects of using 15 different RSP configurations on the maximum speed of five male athletes with bilateral transtibial amputations. These athletes performed sets of running trials up to maximum speed using three different RSP models (Freedom Innovations Catapult FX6, Össur Flex-Foot Cheetah Xtend and Ottobock 1E90 Sprinter) each with five combinations of stiffness category and height. We measured ground reaction forces during each maximum speed trial to determine the biomechanical parameters associated with different RSP configurations and maximum sprinting speeds. Use of the J-shaped Cheetah Xtend and 1E90 Sprinter RSPs resulted in 8.3% and 8.0% (p<0.001) faster maximum speeds compared to the use of the C-shaped Catapult FX6 RSPs, respectively. Neither RSP stiffness expressed as a category (p = 0.836) nor as kNm-1 (p = 0.916) affected maximum speed. Further, prosthetic height had no effect on maximum speed (p = 0.762). Faster maximum speeds were associated with reduced ground contact time, aerial time, and overall leg stiffness, as well as with greater stance-average vertical ground reaction force, contact length, and vertical stiffness (p = 0.015 for aerial time, p<0.001 for all other variables). RSP shape, but not stiffness or height, influences the maximum speed of athletes with bilateral transtibial amputations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2013
Fligge, N.; Urbanek, H.; der Smagt, P. Van
Relation between object properties and EMG during reaching to grasp Artikel
In: J. Electromyogr. Kinesiology, Bd. 23, Nr. 2, S. 402–410, 2013, ISSN: 1873-5711.
@article{Fligge2013,
title = {Relation between object properties and EMG during reaching to grasp},
author = {N. Fligge and H. Urbanek and P. Van der Smagt},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L52331059&from=export},
doi = {10.1016/j.jelekin.2012.10.010},
issn = {1873-5711},
year = {2013},
date = {2013-01-01},
journal = {J. Electromyogr. Kinesiology},
volume = {23},
number = {2},
pages = {402–410},
address = {N. Fligge, German Aerospace Center (DLR), Center for Robotics and Mechatronics, Muenchner Strasse 20, D-82234 Oberpfaffenhofen-Wessling, Germany},
abstract = {In order to stably grasp an object with an artificial hand, a priori knowledge of the object's properties is a major advantage, especially to ensure subsequent manipulation of the object held by the hand. This is also true for hand prostheses: pre-shaping of the hand while approaching the object, similar to able-bodied, allows the wearer for a much faster and more intuitive way of handling and grasping an object. For hand prostheses, it would be advantageous to obtain this information about object properties from a surface electromyography (sEMG) signal, which is already present and used to control the active prosthetic hand.We describe experiments in which human subjects grasp different objects at different positions while their muscular activity is recorded through eight sEMG electrodes placed on the forearm. Results show that sEMG data, gathered before the hand is in contact with the object, can be used to obtain relevant information on object properties such as size and weight. © 2012 Elsevier Ltd.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}