TPress
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
Shimizu, Y.; Mutsuzaki, H.; Maezawa, T.; Idei, Y.; Takao, K.; Takeuchi, R.; Onishi, S.; Hada, Y.; Yamazaki, M.; Wadano, Y.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 5, S. 522–526, 2017, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputee, article, bilateral transfemoral amputee, burn, case report, clinical article, diabetes mellitus, dipeptidyl peptidase IV inhibitor, hemoglobin A1c, hip prosthesis, human, laminoplasty, leg amputation, male, middle aged, muscle strength, Ottobock, postoperative care, range of motion, sitting, skin transplantation, swan, SwanS, walking, wheelchair, wound healing
@article{Shimizu2017,
title = {Hip prosthesis in sitting posture for bilateral transfemoral amputee after burn injury: a case report},
author = {Y. Shimizu and H. Mutsuzaki and T. Maezawa and Y. Idei and K. Takao and R. Takeuchi and S. Onishi and Y. Hada and M. Yamazaki and Y. Wadano},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L618507994&from=export},
doi = {10.1177/0309364616682384},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {5},
pages = {522–526},
address = {Y. Shimizu, Department of Rehabilitation Medicine, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, Japan},
abstract = {Background: To overcome the challenges of rehabilitation of bilateral transfemoral amputees, we developed a novel “hip prosthesis in the sitting posture.” Case Description and Methods: A 64-year-old male bilateral transfemoral amputee was transferred for rehabilitation 4 months following a burn injury. His wounds remained unhealed for 20 months; thus, he was unable to participate in standing training with the standard prosthetic sockets. Hip prosthesis in the sitting posture has very little friction between the sockets and residual limbs, which facilitated our patient to begin standing and walking exercises. Findings and Outcomes: The patient’s refractory wounds healed 1 month after initiating exercises using hip prosthesis in the sitting posture, and he could begin rehabilitation with the standard prostheses. Discussion and Conclusion: Hip prosthesis in the sitting posture enabled a bilateral transfemoral amputee with unhealed residual limbs to stand, walk, and begin balance training. Hip prosthesis in the sitting posture is an effective temporary prosthesis to prevent disuse until wounds are healed and to continue rehabilitation with standard prostheses. Clinical relevance: Hip prosthesis in the sitting posture is useful for bilateral transfemoral amputees with unhealed residual limbs after burn injuries to prevent disuse and maintain motivation for walking.},
keywords = {adult, amputee, article, bilateral transfemoral amputee, burn, case report, clinical article, diabetes mellitus, dipeptidyl peptidase IV inhibitor, hemoglobin A1c, hip prosthesis, human, laminoplasty, leg amputation, male, middle aged, muscle strength, Ottobock, postoperative care, range of motion, sitting, skin transplantation, swan, SwanS, walking, wheelchair, wound healing},
pubstate = {published},
tppubtype = {article}
}
Schweisfurth, M. A.; Markovic, M.; Dosen, S.; Teich, F.; Graimann, B.; Farina, D.
Electrotactile EMG feedback improves the control of prosthesis grasping force Artikel
In: J. Neural Eng., Bd. 13, Nr. 5, 2016, ISSN: 1741-2560.
Abstract | Links | Schlagwörter: accuracy, adult, amputee, article, case report, controlled study, electromyography, electrotactile electromyography, feedback system, female, force, grip strength, hand prosthesis, human, Michaelangelo Hand, myoelectrically controlled prosthesis, priority journal, sensory feedback, task performance, young adult
@article{Schweisfurth2016,
title = {Electrotactile EMG feedback improves the control of prosthesis grasping force},
author = {M. A. Schweisfurth and M. Markovic and S. Dosen and F. Teich and B. Graimann and D. Farina},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L612465506&from=export},
doi = {10.1088/1741-2560/13/5/056010},
issn = {1741-2560},
year = {2016},
date = {2016-01-01},
journal = {J. Neural Eng.},
volume = {13},
number = {5},
address = {D. Farina, Institute for NeuroRehabilitation Systems, University Medical Center Göttingen, Georg-August University, Göttingen, Germany},
abstract = {Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).},
keywords = {accuracy, adult, amputee, article, case report, controlled study, electromyography, electrotactile electromyography, feedback system, female, force, grip strength, hand prosthesis, human, Michaelangelo Hand, myoelectrically controlled prosthesis, priority journal, sensory feedback, task performance, young adult},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2017
Shimizu, Y.; Mutsuzaki, H.; Maezawa, T.; Idei, Y.; Takao, K.; Takeuchi, R.; Onishi, S.; Hada, Y.; Yamazaki, M.; Wadano, Y.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 5, S. 522–526, 2017, ISSN: 0309-3646.
Abstract | Links | Schlagwörter: adult, amputee, article, bilateral transfemoral amputee, burn, case report, clinical article, diabetes mellitus, dipeptidyl peptidase IV inhibitor, hemoglobin A1c, hip prosthesis, human, laminoplasty, leg amputation, male, middle aged, muscle strength, Ottobock, postoperative care, range of motion, sitting, skin transplantation, swan, SwanS, walking, wheelchair, wound healing
@article{Shimizu2017,
title = {Hip prosthesis in sitting posture for bilateral transfemoral amputee after burn injury: a case report},
author = {Y. Shimizu and H. Mutsuzaki and T. Maezawa and Y. Idei and K. Takao and R. Takeuchi and S. Onishi and Y. Hada and M. Yamazaki and Y. Wadano},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L618507994&from=export},
doi = {10.1177/0309364616682384},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {5},
pages = {522–526},
address = {Y. Shimizu, Department of Rehabilitation Medicine, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, Japan},
abstract = {Background: To overcome the challenges of rehabilitation of bilateral transfemoral amputees, we developed a novel “hip prosthesis in the sitting posture.” Case Description and Methods: A 64-year-old male bilateral transfemoral amputee was transferred for rehabilitation 4 months following a burn injury. His wounds remained unhealed for 20 months; thus, he was unable to participate in standing training with the standard prosthetic sockets. Hip prosthesis in the sitting posture has very little friction between the sockets and residual limbs, which facilitated our patient to begin standing and walking exercises. Findings and Outcomes: The patient’s refractory wounds healed 1 month after initiating exercises using hip prosthesis in the sitting posture, and he could begin rehabilitation with the standard prostheses. Discussion and Conclusion: Hip prosthesis in the sitting posture enabled a bilateral transfemoral amputee with unhealed residual limbs to stand, walk, and begin balance training. Hip prosthesis in the sitting posture is an effective temporary prosthesis to prevent disuse until wounds are healed and to continue rehabilitation with standard prostheses. Clinical relevance: Hip prosthesis in the sitting posture is useful for bilateral transfemoral amputees with unhealed residual limbs after burn injuries to prevent disuse and maintain motivation for walking.},
keywords = {adult, amputee, article, bilateral transfemoral amputee, burn, case report, clinical article, diabetes mellitus, dipeptidyl peptidase IV inhibitor, hemoglobin A1c, hip prosthesis, human, laminoplasty, leg amputation, male, middle aged, muscle strength, Ottobock, postoperative care, range of motion, sitting, skin transplantation, swan, SwanS, walking, wheelchair, wound healing},
pubstate = {published},
tppubtype = {article}
}
2016
Schweisfurth, M. A.; Markovic, M.; Dosen, S.; Teich, F.; Graimann, B.; Farina, D.
Electrotactile EMG feedback improves the control of prosthesis grasping force Artikel
In: J. Neural Eng., Bd. 13, Nr. 5, 2016, ISSN: 1741-2560.
Abstract | Links | Schlagwörter: accuracy, adult, amputee, article, case report, controlled study, electromyography, electrotactile electromyography, feedback system, female, force, grip strength, hand prosthesis, human, Michaelangelo Hand, myoelectrically controlled prosthesis, priority journal, sensory feedback, task performance, young adult
@article{Schweisfurth2016,
title = {Electrotactile EMG feedback improves the control of prosthesis grasping force},
author = {M. A. Schweisfurth and M. Markovic and S. Dosen and F. Teich and B. Graimann and D. Farina},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L612465506&from=export},
doi = {10.1088/1741-2560/13/5/056010},
issn = {1741-2560},
year = {2016},
date = {2016-01-01},
journal = {J. Neural Eng.},
volume = {13},
number = {5},
address = {D. Farina, Institute for NeuroRehabilitation Systems, University Medical Center Göttingen, Georg-August University, Göttingen, Germany},
abstract = {Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).},
keywords = {accuracy, adult, amputee, article, case report, controlled study, electromyography, electrotactile electromyography, feedback system, female, force, grip strength, hand prosthesis, human, Michaelangelo Hand, myoelectrically controlled prosthesis, priority journal, sensory feedback, task performance, young adult},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2021
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2017
Shimizu, Y.; Mutsuzaki, H.; Maezawa, T.; Idei, Y.; Takao, K.; Takeuchi, R.; Onishi, S.; Hada, Y.; Yamazaki, M.; Wadano, Y.
In: Prosthet. Orthot. Int., Bd. 41, Nr. 5, S. 522–526, 2017, ISSN: 0309-3646.
@article{Shimizu2017,
title = {Hip prosthesis in sitting posture for bilateral transfemoral amputee after burn injury: a case report},
author = {Y. Shimizu and H. Mutsuzaki and T. Maezawa and Y. Idei and K. Takao and R. Takeuchi and S. Onishi and Y. Hada and M. Yamazaki and Y. Wadano},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L618507994&from=export},
doi = {10.1177/0309364616682384},
issn = {0309-3646},
year = {2017},
date = {2017-01-01},
journal = {Prosthet. Orthot. Int.},
volume = {41},
number = {5},
pages = {522–526},
address = {Y. Shimizu, Department of Rehabilitation Medicine, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, Japan},
abstract = {Background: To overcome the challenges of rehabilitation of bilateral transfemoral amputees, we developed a novel “hip prosthesis in the sitting posture.” Case Description and Methods: A 64-year-old male bilateral transfemoral amputee was transferred for rehabilitation 4 months following a burn injury. His wounds remained unhealed for 20 months; thus, he was unable to participate in standing training with the standard prosthetic sockets. Hip prosthesis in the sitting posture has very little friction between the sockets and residual limbs, which facilitated our patient to begin standing and walking exercises. Findings and Outcomes: The patient’s refractory wounds healed 1 month after initiating exercises using hip prosthesis in the sitting posture, and he could begin rehabilitation with the standard prostheses. Discussion and Conclusion: Hip prosthesis in the sitting posture enabled a bilateral transfemoral amputee with unhealed residual limbs to stand, walk, and begin balance training. Hip prosthesis in the sitting posture is an effective temporary prosthesis to prevent disuse until wounds are healed and to continue rehabilitation with standard prostheses. Clinical relevance: Hip prosthesis in the sitting posture is useful for bilateral transfemoral amputees with unhealed residual limbs after burn injuries to prevent disuse and maintain motivation for walking.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Schweisfurth, M. A.; Markovic, M.; Dosen, S.; Teich, F.; Graimann, B.; Farina, D.
Electrotactile EMG feedback improves the control of prosthesis grasping force Artikel
In: J. Neural Eng., Bd. 13, Nr. 5, 2016, ISSN: 1741-2560.
@article{Schweisfurth2016,
title = {Electrotactile EMG feedback improves the control of prosthesis grasping force},
author = {M. A. Schweisfurth and M. Markovic and S. Dosen and F. Teich and B. Graimann and D. Farina},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L612465506&from=export},
doi = {10.1088/1741-2560/13/5/056010},
issn = {1741-2560},
year = {2016},
date = {2016-01-01},
journal = {J. Neural Eng.},
volume = {13},
number = {5},
address = {D. Farina, Institute for NeuroRehabilitation Systems, University Medical Center Göttingen, Georg-August University, Göttingen, Germany},
abstract = {Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}