TPress
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
Abstract | Links | Schlagwörter: adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {adult, amputee, article, camera, case study, clinical article, comparative study, compression release stabilization, data analysis software, evaluation study, female, femoral shaft, foot prosthesis, gait, gluteus muscle, human, information processing device, IRCT20181021041400N1, ischial tuberosity, kinematics, knee prosthesis, leather belt wrap, limb amputation, male, MATLAB, medical device, middle aged, motion analysis system, orthopedic cast, orthopedic surgical equipment, Ottobock 3R20, pilot study, prosthesis design, quadrilateral socket, solid ankle cushioned heel foot, statistical model, step length, step time, step width, stride length, stride time, symmetry index, transfemoral socket, walking, walking speed, weight training, Wilcoxon signed ranks test},
pubstate = {published},
tppubtype = {article}
}
2018
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {adult, article, biomechanics, controlled study, energy storing and return prosthetic feet, gait, human, kinematics, leg amputation, leg prosthesis, male, mobilization, priority journal, solid ankle cushioned heel feet, step length, walking speed},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Yazdani, M.; Hajiaghaei, B.; Saeedi, H.; Kamali, M.; Yousefi, M.
In: Curr. Orthop. Pract., Bd. 32, Nr. 5, S. 505–511, 2021, ISSN: 1940-7041.
@article{Yazdani2021,
title = {Does the socket design affect symmetry and spatiotemporal gait parameters? A case series of two transfemoral amputees},
author = {M. Yazdani and B. Hajiaghaei and H. Saeedi and M. Kamali and M. Yousefi},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L635549609&from=export},
doi = {10.1097/bco.0000000000001022},
issn = {1940-7041},
year = {2021},
date = {2021-01-01},
journal = {Curr. Orthop. Pract.},
volume = {32},
number = {5},
pages = {505–511},
address = {B. Hajiaghaei, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Nezam Ave, Tehran, Iran},
abstract = {Background: Socket design is thought to improve gait performance and symmetry as the other components of the prosthesis do. This study focused on the comparison of two different sockets in transfemoral amputee patients to evaluate the influence of the socket designs on gait symmetry and various spatiotemporal gait parameters. Methods: Two transfemoral amputees participated in this case series study. They were asked to walk with the quadrilateral and the new modified sockets along a 10-meter walkway. The marker-based motion capture system recorded the spatiotemporal gait data during all walking trials. Kinematic data were compared between the two test conditions using the Wilcoxon signed-rank test and Symmetry Index. Results: The new socket increased velocity and cadence and reduced step width in both amputees, compared with the quadrilateral sockets. However, a good symmetry was observed in step length, stride length, step time, and stride time within two limbs by both sockets (SI ≤10). Conclusions: The design of sockets in this study had no observed effect on gait symmetry; however, the new socket increased velocity and cadence and reduced width step in both patients compared with the quadrilateral socket. Level of Evidence: Level IV.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2018
Houdijk, H.; Wezenberg, D.; Hak, L.; Cutti, A. G.
In: J. NeuroEng. Rehabil., Bd. 15, 2018, ISSN: 1743-0003.
@article{Houdijk2018,
title = {Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation},
author = {H. Houdijk and D. Wezenberg and L. Hak and A. G. Cutti},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L623754871&from=export},
doi = {10.1186/s12984-018-0404-9},
issn = {1743-0003},
year = {2018},
date = {2018-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {15},
address = {H. Houdijk, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, Amsterdam, Netherlands},
abstract = {Background: Energy storing and return (ESAR) feet are generally preferred over solid ankle cushioned heel (SACH) feet by people with a lower limb amputation. While ESAR feet have been shown to have only limited effect on gait economy, other functional benefits should account for this preference. A simple biomechanical model suggests that enhanced gait stability and gait symmetry could prove to explain part of the difference in the subjective preference between both feet. Aim: To investigate whether increased push-off power with ESAR feet increases center of mass velocity at push off and enhance intact step length and step length symmetry while preserving the margin of stability during walking in people with a transtibial prosthesis. Methods: Fifteen people with a unilateral transtibial amputation walked with their prescribed ESAR foot and a SACH foot at a fixed walking speed (1.2 m/s) over a level walkway while kinematic and kinetic data were collected. Push-off work generated by the foot, center of mass velocity, step length, step length symmetry and backward margin of stability were assessed and compared between feet. Results: Push-off work was significantly higher when using the ESAR foot compared to the SACH foot. Simultaneously, center of mass velocity at toe-off was higher with ESAR compared to SACH, and intact step length and step length symmetry increased without reducing the backward margin of stability. Conclusion: Compared to the SACH foot, the ESAR foot allowed an improvement of step length symmetry while preserving the backward margin of stability at community ambulation speed. These benefits may possibly contribute to the subjective preference for ESAR feet in people with a lower limb amputation.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}