TPress
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force},
pubstate = {published},
tppubtype = {article}
}
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
Abstract | Links | Schlagwörter: anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
Abstract | Links | Schlagwörter: above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {above knee amputation, adduction, adult, article, biomechanics, camera, clinical article, controlled study, female, femoral knee prosthesis, gait, Genium, ground reaction force, human, male, microprocessor, motion analysis system, pelvis, prosthetic alignment, step length, transfemoral amputation, transfemoral prosthetic socket, Triton, trunk, tyloxapol, Vicon Bonita, walking, walking speed},
pubstate = {published},
tppubtype = {article}
}
2017
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
Abstract | Links | Schlagwörter: adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {adult, article, autoadaptive dorsiflexion stop, controlled study, foot prosthesis, Genium, ground reaction force, human, human experiment, informed consent, joint angle, joint torque, leg amputation, male, microprocessor, microprocessor controlled prosthetic feet, musculoskeletal function, musculoskeletal system parameters, priority journal, standing, task performance, transfemoral amputation, transtibial amputation, vertical ground reaction force},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
Abstract | Links | Schlagwörter: above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {above knee prosthesis, adult, amputee, article, C-leg, climbing, cohort analysis, female, gait, Genium, human, major clinical study, male, mobilization, patient attitude, priority journal, retrospective study, toileting, walking},
pubstate = {published},
tppubtype = {article}
}
2014
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
Abstract | Links | Schlagwörter: anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {anatomy, ankle prosthesis, arm amputation, arm movement, arm prosthesis, biomechanics, bone regeneration, C-leg, Delrin, elbow prosthesis, equipment design, finger amputation, functional status, Genium, hand amputation, health care access, Helix3D, hemipelvectomy, hip prosthesis, human, iLIMB Hand, Kevlar, kinematics, knee prosthesis, leg amputation, leg movement, leg prosthesis, microprocessor, motor control, orthopedic shoe, patient preference, physical activity, Power Knee, priority journal, prosthesis complication, public health service, quality of life, rehabilitation care, review, shoulder prosthesis, surgical technique, surgical technology, suspension, thumb amputation},
pubstate = {published},
tppubtype = {article}
}
2021
Köhler, T. M.; Blumentritt, S.; Braatz, F.; Bellmann, M.
In: Gait Posture, Bd. 89, S. 169–177, 2021, ISSN: 0966-6362.
@article{Koehler2021,
title = {The impact of transfemoral socket adduction on pelvic and trunk stabilization during level walking - A biomechanical study},
author = {T. M. Köhler and S. Blumentritt and F. Braatz and M. Bellmann},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L2013710687&from=export},
doi = {10.1016/j.gaitpost.2021.06.024},
issn = {0966-6362},
year = {2021},
date = {2021-09-01},
journal = {Gait Posture},
volume = {89},
pages = {169–177},
publisher = {Elsevier BV},
address = {T.M. Köhler, Ottobock SE & Co. KGaA, Hermann-Rein-Straße 2a, Göttingen, Germany},
abstract = {Background: It is common practice to align transfemoral prosthetic sockets in adduction, due to the physiologic, adducted femoral alignment in unimpaired legs. An adducted femoral and socket alignment helps tightening hip abductors to stabilize the pelvis and reduce pelvic and trunk related compensatory movements. Research question: How do different socket adduction conditions (SAC) of transfemoral sockets affect pelvic and trunk stabilization during level ground walking in the frontal plane? Methods: Seven persons with transfemoral amputation with medium residual limb length participated in this study. The prosthetic alignment in the sagittal plane was performed according to established recommendations. SAC varied (0°, 3°, 6°, 9°). Kinematic and kinetic parameters were recorded in a gait laboratory with a 12-camera optoelectronic system and two piezoelectric force plates embedded in a 12-m walkway. The measurements were performed during level ground walking with self-selected comfortable gait speed. Results: In the frontal plane, nearly all investigated kinematic and kinetic parameters showed a strong correlation with the SAC. The pelvis was raised on the contralateral side throughout the gait cycle with increasing SAC. During the prosthetic side stance phase, the mean shoulder obliquity and mean lateral trunk lean to the prosthetic side tended to be reduced with increased SAC. Prosthetic side hip abduction moment decreased with increasing SAC. Significance: The results confirm that transfemoral SAC contributes to pelvic stabilization and reduced compensatory movements of the pelvis and trunk. Transfemoral SAC of 6 ± 1° for bench alignment seems adequate for amputees with medium residual limb length. However, the optimum value for the individual patient may differ slightly.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2017
Ernst, M.; Altenburg, B.; Bellmann, M.; Schmalz, T.
In: J. NeuroEng. Rehabil., Bd. 14, Nr. 1, 2017, ISSN: 1743-0003.
@article{Ernst2017,
title = {Standing on slopes - How current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task},
author = {M. Ernst and B. Altenburg and M. Bellmann and T. Schmalz},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L619264869&from=export},
doi = {10.1186/s12984-017-0322-2},
issn = {1743-0003},
year = {2017},
date = {2017-01-01},
journal = {J. NeuroEng. Rehabil.},
volume = {14},
number = {1},
address = {M. Ernst, Research Biomechanics, CRandS, Otto Bock HealthCare GmbH, Göttingen, Germany},
abstract = {Background: Conventional prosthetic feet like energy storage and return feet provide only a limited range of ankle motion compared to human ones. In order to overcome the poor rotational adaptability, prosthetic manufacturers developed different prosthetic feet with an additional rotational joint and implemented active control in different states. It was the aim of the study to investigate to what extent these commercially available microprocessor-controlled prosthetic feet support a natural posture while standing on inclines and which concept is most beneficial for lower limb amputees. Methods: Four unilateral transtibial and four unilateral transfemoral amputees participated in the study. Each of the subjects wore five different microprocessor-controlled prosthetic feet in addition to their everyday feet. The subjects were asked to stand on slopes of different inclinations (level ground, upward slope of 10°, and downward slope of -10°). Vertical ground reaction forces, joint torques and joint angles in the sagittal plane were measured for both legs separately for the different situations and compared to a non-amputee reference group. Results: Differences in the biomechanical parameters were observed between the different prosthetic feet and compared to the reference group for the investigated situations. They were most prominent while standing on a downward slope. For example, on the prosthetic side, the vertical ground reaction force is reduced by about 20%, and the torque about the knee acts to flex the joint for feet that are not capable of a full adaptation to the downward slope. In contrast, fully adaptable feet with an auto-adaptive dorsiflexion stop show no changes in vertical ground reaction forces and knee extending torques. Conclusions: A prosthetic foot that provides both, an auto-adaptive dorsiflexion stop and a sufficient range of motion for fully adapting to inclinations appears to be the key element in the prosthetic fitting for standing on inclinations in lower limb amputees. In such situations, this prosthetic concept appears superior to both, conventional feet with passive structures as well as feet that solely provide a sufficient range of motion. The results also indicate that both, transfemoral and transtibial amputees benefit from such a foot.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2016
Hahn, A.; Lang, M.; Stuckart, C.
In: Medicine, Bd. 95, Nr. 45, 2016, ISSN: 0025-7974.
@article{Hahn2016,
title = {Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings},
author = {A. Hahn and M. Lang and C. Stuckart},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L613375887&from=export},
doi = {10.1097/md.0000000000005386},
issn = {0025-7974},
year = {2016},
date = {2016-01-01},
journal = {Medicine},
volume = {95},
number = {45},
address = {A. Hahn, Otto Bock Healthcare Products GmbH, Brehmstrasse 16, Vienna, Austria},
abstract = {The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2014
Kistenberg, R. S.
Prosthetic choices for people with leg and arm amputations Artikel
In: Phys. Med. Rehabil. Clin. North Am., Bd. 25, Nr. 1, S. 93–115, 2014, ISSN: 1558-1381.
@article{Kistenberg2014,
title = {Prosthetic choices for people with leg and arm amputations},
author = {R. S. Kistenberg},
url = {https://www.embase.com/search/results?subaction=viewrecord&id=L370343297&from=export},
doi = {10.1016/j.pmr.2013.10.001},
issn = {1558-1381},
year = {2014},
date = {2014-01-01},
journal = {Phys. Med. Rehabil. Clin. North Am.},
volume = {25},
number = {1},
pages = {93–115},
address = {R.S. Kistenberg, Georgia Institute of Technology, School of Applied Physiology, 555 14th Street, Atlanta, GA 30318, United States},
abstract = {New technology and materials have advanced prosthetic designs to enable people who rely on artificial limbs to achieve feats never dreamed before. However, the latest and the greatest technology is not appropriate for everyone. The aim of this article is to present contemporary options that are available for people who rely on artificial limbs to enhance their quality of life for mobility and independence. © 2014 Elsevier Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}